Advanced SearchSearch Tips
Coagulation and Flotation Conditions of Humic Acid by Dissolved Air Flotation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Coagulation and Flotation Conditions of Humic Acid by Dissolved Air Flotation
Lee, Chang-Han;
  PDF(new window)
Coagulation, flocculation, and dissolved air flotation (DAF) experiments were performed with humic acid to evaluate the influence of operational conditions on removal efficiencies. We investigated coagulation, flocculation, and flotation conditions of humic acid removal using a laboratory-scale DAF system. This paper deals with coagulant type (aluminum sulfate and PSO-M) and the most relevant operational conditions (velocity gradients for coagulation and flocculation, retention time and recycle ratio and flotation time). Results showed that optimal conditions for removing humic acid, yielding CHA removal efficiencies of approximately 85 %, are a recycle ratio of 40 %, coagulant dosages of 0.15 - 0.20 gAl/gHA as aluminum sulfate and 0.03 - 0.12 gAl/gHA as PSO-M, coagulation( and 60s), flocculation( and 900s or more), and flotation(490 kPa or more and at least 10 min).
Humic acid;Coagulation;Flotation;Velocity gradient;Kinetic model;DAF;
 Cited by
Arbiter, N., Harris, C. C., Fuestenau, D. W., 1961, Flotation Kinetics in Froth Flotation 50th Anniversary, SME-AIME, 215-246

Amirtharajah, A., Mills, P., 1982, Rapid mix design for mechanism of alum coagulation, J. AWWA, 74(4), 210-216. crossref(new window)

Bian, R., Watanabe, Y., Tambo, N., Ozawa, G., 1999, Removal of humic substances by UF and NF membrane systems. Wat. Sci. Tech., 40(9), 121-129. crossref(new window)

Bourgeois, J. C., Walsh, M. E., Gagnon, G. A., 2004, Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios, Wat. Res., 38(5), 1173-1182. crossref(new window)

Burns, S. E., Yiacoumi, S., Tsouris, S., 1997, Microbubble generation for environmental and industrial separations, Sep. Purif. Tech., 11(3), 221-232. crossref(new window)

Colomer, J., Peters, F., Marrase, C., 2005, Experimental analysis of coagulation of particles under low-shear flow, Wat. Res., 39(13), 2994-3000. crossref(new window)

Duan, J., Wang, J., Graham, N., Wilson, F., 2002, Coagulation of humic acid by aluminium sulphate in saline water conditions, Desalination, 150(1), 1-14. crossref(new window)

Edzwald, J. K., 1995, Principles and applications of dissolved air flotation. Wat. Sci. Tech., 31(3-4), 1-23. crossref(new window)

Gallard, H., Gunten, U., 2002, Chlorination of natural organic matter: kinetics of chlorination and of THM formation, Wat. Res., 36(1), 65-74. crossref(new window)

Gao, B. Y., Chu, Y. B., Yue, Q. Y., Wang, B. J., Wang, S. G., 2005, Characterization and coagulation of a polyaluminum chloride (PAC) coagulant with high Al13 content, J. of Env. Mana., 76(2), 143-147. crossref(new window)

Ge, F., Shu, H., Dai, Y., 2007, Removal of bromide by aluminium chloride coagulant in the presence of humic acid, J. of Hazar. Mat., 147(1-2), 457-462. crossref(new window)

Gibbons, J., Laha, S., 1999, Water purification systems: a comparative analysis based on the occurrence of disinfection by-products, Env. Pol., 106(3), 425-428. crossref(new window)

Guay, C., Rodriguez, M., Serodes, J., 2005, Using ozonation and chloramination to reduce the formation of trihalomethanes and haloacetic acids in drinking water. Desalination, 176(1-3), 229-240. crossref(new window)

Jansen, S., Paciolla, M., Ghabbour, E., Davies, G., Varnum J. M., 1996, The role of metal complexation in the solubility and stability of humic acid, Mat. Sci. Eng., 4(3), 181-187. crossref(new window)

Jung, A. V., Chanudet, V., Ghanbaja, J., Lartiges, B. S., Bersillon, J. L., 2005, Coagulation of humic substances and dissolved organic matter with a ferric salt: An electron energy loss spectroscopy investigation, Wat. Res., 39(16), 3849-3862. crossref(new window)

Kam, S. K., Gregory, J., 2001, The interaction of humic substances with cationic polyelectrolytes, Wat. Res., 35(15), 3557-3566. crossref(new window)

Klute, R., Langer, S., Pfeifer, R., 1995, Optimization of coagulation processes prior to DAF, Wat. Sci. Tech., 31(3-4), 59-62. crossref(new window)

Matilainen, A., Lindqvist, N., Korhonen, S., Tuhkanen, T., 2002, Removal of NOM in the different stages of the water treatment process, Env. Inter., 28(6), 457-465. crossref(new window)

Matilainen, A., Vieno, N., Tuhkanen, T., 2006, Efficiency of the activated carbon filtration in the natural organic matter removal, Env. Inter., 32(3), 324-331. crossref(new window)

Mavros, P., Matis, K. A., 1991, Innovations in Flotation Technology, Kluwer Academic Publishers, Dordrecht.

Mhaisalkar, V. A., Paramasivam, R., Bhole, A. G., 1991, Optimizing physical parameters of rapid mix design for coagulation-flocculation of turbid waters, Wat. Res., 25(1), 43-52. crossref(new window)

Muyibi, S. A., Evison, L. M., 1995, Optimizing physical parameters affecting coagulation of turbid water with Morninga oleifera seeds, Wat. Res., 29(12), 2689-2695. crossref(new window)

O'Melia, C. R., Becker, W. C., Au, K. K., 1999, Removal of humic substances by coagulation, Wat. Sci. Tech., 40(9), 47-54. crossref(new window)

Owen, D. M., Amy, G. L., Chowdhury, Z. K., Rajendra, P., Mccoy, G., Viscosil, K., 1995, NOM Characterization and Treatability, J. AWWA, 87(1), 46-63.

Rijk, S. E., Jaap G., Blanken, J. G., 1994, Bubble size in flotation thickening, Wat. Res., 28(2), 465-473. crossref(new window)

Rossini, M., Garrido, J. G., Galluzzo, M., 1999, Optimization of the coagulation-flocculation treatment: influence of rapid mix parameters, Wat. Res., 33(8), 1817-1826. crossref(new window)

Teixeira, M. R., Rosa, M. J., 2007, Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa: Part II. The effect of water background organics, Sepa. Purif. Tech., 53(1), 126-134. crossref(new window)

Vlaski, A., Breemen, A. N., Alaerts, G. J., 1997, The role of particle size and density in dissolved air flotation and sedimentation, Wat. Sci. Tech., 36(4), 177-189. crossref(new window)

Yoon, J., Choi, Y., Cho, S., Lee, D., 2003, Low trihalomethane formation in Korean drinking water, Sci. Total Env., 302(1-3), 157-166. crossref(new window)

Zouboulis, A. I., Jun, W., Katsoyiannis, I. A., 2003, Removal of humic acids by flotation, Col. and Surf. A: Physico. Eng. Aspects, 231(1-3), 181-193. crossref(new window)

Zouboulis, A. I., Xiao, F., Katsoyiannis, I. A., 2004, The application of bioflocculant for the removal of humic acids from stabilized landfill leachates, J. of Env. Mana., 70(1), 35-41. crossref(new window)