Advanced SearchSearch Tips
The Role of NifA and PrrA on the Expression of nif Gene in Rhodobacter sphaeroides
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
The Role of NifA and PrrA on the Expression of nif Gene in Rhodobacter sphaeroides
Son, Myung-Hwa; Kim, Min-Ju; Lee, Sang-Joon;
  PDF(new window)
To find out the growth conditions for the maximum activity of nitrogenase which catalyzes nitrogen fixation in Rhodobacter sphaeroides, the promoter activities of nifA and nifH were analyzed and the results indicated that expression of both nifA and nifH was increased in response to deprivation of both O2 concentration and nitrogen source. The nifA mutant was constructed by deleting the gene to investigate the effect of NifA, the transcriptional regulator, on the nifH and nifA expression in R. sphaeroides. Analysis of expression of nif genes using the nifA::lacZ and nifH::lacZ fusions in the nifA mutant revealed that NifA acts as a positive activator for nifH and an autoregulator in its own expression. The promoter activities of nifA and nifH in the prrA mutant grown under anaerobic and -free conditions were derepressed, comparing with those of the wild-type grown under the same conditions, indicating that the prrA product acts as a positive regulator in expression of nifA and nifH.
Nitrogen fixation;Rhodobacter sphaeroides;Nitrogenase;nifH;nifA;PrrBA two-component system;
 Cited by
Bauer, E., Kaspar, T., Fischer, H. M., Hennecke, H., 1998, Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator, RegR, J. Bacteriol., 180, 3853-3863.

Cohen-Bazire, G., Sistrom, W. R., Stanier, R. Y., 1957, Kinetic studies of pigment synthesis by non-sulfur purple bacteria, J. Cell. Physiol., 49, 25-68. crossref(new window)

Davis, J., Donohue, T. J., Kaplan, S., 1988, Construction, characterization, and complementation of a puf mutant of Rhodobacter sphaeroides, J. Bacteriol., 170, 320-329. crossref(new window)

Dixon, R., 1998, The oxygen-responsive NIFL-NIFA complex: a novel two-component regulatory system controlling nitrogenase synthesis in gamma-proteobacteria, Arch. Microbiol., 169, 371-380. crossref(new window)

Elsen, S., Dischert, W., Colbeau, A., Bauer, C. E., 2000, Expression of uptake hydrogenase and molybdenum nitrogenase in Rhodobacter capsulatus is coregulated by the RegB-RegA two-component regulatory system, J. Bacteriol., 182, 2831-2837. crossref(new window)

Eraso, J. M., Roh, J. H., Zeng, X., Callister, S. J., Lipto n, M. S., Kaplan, S., 2008, Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4.1: combined transcriptome and proteome analysis, J. Bacteriol., 190, 4831-4848. crossref(new window)

Eraso, J. M., Kaplan, S., 1996, Complex regulatory activities associated with the histidine kinase PrrB in expression of photosynthesis genes in Rhodobacter sphaeroides 2.4.1., J. Bacteriol., 178, 7037-7046. crossref(new window)

Eraso, J. M., Kaplan, S., 1995, Oxygen-Insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase, J. Bacteriol., 177, 2695-2706. crossref(new window)

Eraso, J. M., Kaplan, S., 1994, prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides, J. Bacteriol., 176, 32-43. crossref(new window)

Fischer, H. M., 1994, Genetic regulation of nitrogen fixation in rhizobia, Microbiol. Rev., 58, 352-386.

Fischer, H. M., Hennecke, H., 1987, Direct response of Bradyrhizobium japonicum nifA-mediated nif gene regulation to cellular oxygen status, Mol. Gen Genet., 209, 621-626. crossref(new window)

Fischer, H. M., Bruderer, T., Hennecke, H., 1988, Essential and non-essential domains in the Bradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding, Nucleic Acid Res., 16, 2207-2224. crossref(new window)

Fostner-Hartnett, D., Kranz, R. G., 1992, Analysis of the promoters and upstream sequences of nifA1 and nifA2 in Rhodobacter capsulatus:activation requires ntrC but not rpoN, Mol. Microbiol, 6, 1049-1060. crossref(new window)

Halbleib, C. M., Ludden, P. W., 2000, Regulation of biological nitrogen fixation, J. Nutr., 130, 1081-1084. crossref(new window)

Hubner, P., Willison, J. C., Vignais, P. M., Bickle, T. A., 1991, Expression of Regulatory nif Genes in Rhodobacter capsulatus, J. Bacteriol., 173, 2993-2999. crossref(new window)

Jessee, J., 1986, New subcloning efficiency competent cells: >1x$10^{6}$ transformants/$\mu g$, Focus, 8, 9.

Joshi, H. M., Tabita, F. R., 1996, A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation, Proc. Natl. Acad. Sci. U. S. A., 93, 14515-14520. crossref(new window)

Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop II , R. M., Peterson, K. M., 1995, Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes, Gene, 166, 175-176. crossref(new window)

Kranz, R. G., Foster-Hartnett, D., 1990, Transcriptional regulatory cascade of nitrogen-fixation genes in anoxygenic photosynthetic bacteria: oxygen- and nitrogen-responsive factors, Mol. Microbiol., 4, 1793-1800. crossref(new window)

Kranz, R. G., Pace, V. M., Caldicott, I. M., 1990, Inactivation, sequences, and lacZ fusion analysis of a regulatory locus required for repression of nitrogen fixation genes in Rhodobacter capusulatus, J. Bacteriol., 172, 53-62. crossref(new window)

Lee, J. K., Kaplan, S., 1995, Transcriptional regulation of puc operon expression in Rhodobacter sphaeroides. Analysis of the cis-acting downstream regulatory sequence, J. Biol. Chem., 270, 20453-20458. crossref(new window)

Lenz, O., Schwartz, E., Dernedde, Eitinger, J., M., Friedrich, B., 1994, The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation, J. Bacteriol., 176, 4385-4393. crossref(new window)

Masepohl, B., Klipp, W., 1996, Organization and regulation of genes encoding the molybdenum nitrogenase and the alternative nitrogenase in Rhodobacter capsulatus, Arch. Microbiol., 165, 80-90. crossref(new window)

Masuda, S., Matsumoto, Y., Nagashima, K. V., Shimada, K., Inoue, K., Bauer, C. E., Matsuura, K., 1999, Structural and functional analyses of photosynthetic regulatory genes regA and regB from Rhodovulum sulfidophilum, Roseobacter denitrificans, and Rhodobacter capsulatus, J. Bacteriol., 181, 4205-4215.

Merric, M. J., Edwards, R. A., 1995, Nitrogen control in bacteria, Microbiol. Rev., 59, 604-622.

Merrick, M. J., 1983, Nitrogen control of the nif regulon in Klebsiella pneumoniae: involvement of the ntrA gene and analogies between ntrC and nifA, EMBO J., 2, 39-44.

Michiels, J., D'hooghe, I., Verreth, C., Pelemans, H., Vanderleyden, J., 1994, Characterization of the Rhizobium leguminosarum biovar phaseoli nifA gene, a positive regulator of nif gene expression, Arch. Microbiol., 161, 404-408. crossref(new window)

Miller, J. H., 1972, Experiments in molecular genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y..

Oelze, J., Klein, G., 1996, Control of nitrogen fixation by oxygen in purple nonsulfur bacteria, Arch. Microbiol., 165, 219-225. crossref(new window)

Paschen, A., Drepper, T., Masepohl, B., Klipp, W., 2001, Rhodobacter capsulatus nifA mutants mediating nif gene expression in the presence of ammonium, FEMS. Microbiol. Lett., 200, 207-213. crossref(new window)

Qian, Y., Tabita, F. R., 1996, A global signal transduction system regulates aerobic and anaerobic $CO_{2}$ fixation in Rhodobacter sphaeroides, J. Bacteriol., 178, 12-18. crossref(new window)

Sambrook, J., Fritsch, E. F., Maniatis, T., 1989, Molecular cloning: a laboratory manual, 2nd cd. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y..

Schmitz, R. A., Klopprogge, K., Grabbe, R., 2002 Regulation of nitrogen fixation in Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two environmental signals to the nif transcriptional activator NifA., J. Mol .Microbiol. Biotechnol., 4, 235-242.

Sganga, M. W., Bauer, C. E., 1992, Regulatory factors controlling photosynthetic reaction center and light-harvesting gene expression in Rhodobacter capsulatus, Cell, 68, 945-954. crossref(new window)

Simon, R., Priefer, U., Puhler, A., 1983, A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria, Bio/Technology, 1, 784-791. crossref(new window)

Son, M. H., Lee, S. J., 2012, Analysis of the orf 282 Gene and Its Function in Rhodobacter sphaeroide 2.4.1, J. Life Sci., 22, 1009-1017. crossref(new window)

Thompson, J. D., Higgins, D. G., Gibson, T. J., 1994, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids. Res., 22, 4673- 4680. crossref(new window)

Tiwari, R. P., Reeve, W. G., Dilworth, M. J., Glenn, A. R., 1996, Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensorregulator system, Microbiology, 142, 1693-1704. crossref(new window)

van Niel, C. B., 1944, The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria, Bacteriol. Rev., 8, 1-118.

Yanisch-Perron, C., Vieira, J., Messing, J., 1985, Improved M13 phage cloning vectors and host strains: nucleotide sequence for the M13 mp18 and pUC19 vectors, Gene, 33, 103-119. crossref(new window)