Advanced SearchSearch Tips
Analysis of Attached Bacterial Community of Biological Activated Carbon Process Using FISH
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Analysis of Attached Bacterial Community of Biological Activated Carbon Process Using FISH
Son, Hyeng-Sik; Son, Hee-Jong; Park, Geun-Tae; Lee, Sang-Joon;
  PDF(new window)
The concentration of organic compounds was analyzed at each step of BAC process though . Further, bacteria communities and biomass concentrations measured FISH and ATP methods were analyzed. The bed volume (BV) of steady state is different from that of based on assessment of organic compounds removal. Bed volumes in DOC, and removal at steady state were around 27,500 (185.8 day), 15,000 (101.4 day) and 32,000 (216.2 day), respectively. A biomass didn't change after the bed volume reached 22,500 (152.0 day) according to analyzing ATP concentration of bacteria. The concentration of ATP was 2.14 in BV 22,500 (152.0 day). The total bacterial number was cells/g at the bed volume 1,150 (7.8 day) (the initial operation) and the number of bacteria was at the bed volume 58,560 395.7 day) that increased more than 200 times. Bacterial uptrend was reduced and bacterial communities were stabilized since BV 18,720 (126.5 day). When BV were 1,150 (7.8 day), 8,916 (60.2 day), 18,720 (126.5 day), 31,005 (209.5 day), 49,632 (335.3 day), 58,560 (395.7 day), a proportion of total bacteria for the Eubacteria were 60.1%, 66.0%, 78.4%, 82.0%, 81.3% respectively. -Proteobacteria group was the most population throughout the entire range. The correlation coefficient () between Eubacteria biomass and ATP concentration was 0.9448.
Biological activated carbon (BAC);Attached bacterial community;Fluorescent in situ hybridization (FISH);Biomass;Biodegradable dissolve organic carbon (BDOC);Bed volume (BV);
 Cited by
Boon, N., Pycke, B. F. G., Marzorati, M., Hammes, F., 2011, Nutrient gradients in a granular activated carbon biofilter drives bacterial community organization and dynamics, Water Res., 45, 6355-6361. crossref(new window)

Carlson, K. H., Amy, G. L., 1998, BOM removal during biofiltration, J. AWWA., 90(12), 42-52.

Chien, C. C., Kao, C. M., Chen, C. W., Dong, C. D., Wu, C. Y., 2008, Application of biofiltration system on AOC removal: column and field studies, Chemosphere, 71, 1786-1793. crossref(new window)

Delong, E. F., Wickham, G. S., Davis, A. A., 1993, Phylogenetic diversity of substrate marine microbial communities from the Atlantics and Pacific Pceans, Science, 243, 1360-1363.

Dewaters, J. E., Digiano, F. A., 1990, The influence of ozonated natural organic matter on the biodegradation of a micropollutant in a GAC bed, J. AWWA., 82(8), 69-75.

Faoro, H., Alves, A. C., Souza, E. M., Rigo, L. U., Cruz, L. M., Al-Janabi, S. M., Monteiro, R. A., Baura, V. A., Pedrosa, F. O., 2010, Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest, Appl. Environ. Microbiol., 76(14), 4744-4749. crossref(new window)

Fonseca, A. C., Summers, R. S., Hernandez, M. T., 2001, Comparative measurements of microbial activity in drinking water biofilters, Water Res., 35(16), 3817-3824. crossref(new window)

Glockner, F. O., Fuchs, B. M., Amann, R., 1999, Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization, Appl. Environ. Microbiol., 65(8), 3721-3726.

Juretschko, S., Loy, A., Lehner, A., Wagner, M., 2002, The Microbial community composition of a nitrifyingdenitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA Approach, Syst. Appl. Microbiol., 25, 84-99. crossref(new window)

Lew, S., Lew, M., Miesszczynski, T., Szarek, J., 2010, Selected fluorescent techniques for identification of the physiological state of individual water and soil bacterial cells-review, Folia Microbiol., 55(2), 107-118. crossref(new window)

Lymperopoulou, D. S., Kormas, K. A., Karagoun, A. D., 2012, Variability of prokaryotic community structure in a drinking water reservoir (marathonas, Greece), Microbe Environ., 27(1), 1-8. crossref(new window)

Magic-Knezev, A., van der Kooij, D., 2004, Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment, Water Res., 38, 3971-3979. crossref(new window)

Manz, W., Amann, R., Ludwig, W., Wagner, M., Schleifer, K. H., 1992, Phylogenetic oligonucleotide probes for the major subclassesof Proteobacteria: problemas and solutions, Sys. Appl. Microbiol. 15(4), 593-600. crossref(new window)

Manz, W., Eisenbrecher, M., Neu, T. R., Szewzyk, U., 1998, Abundance and spatial organization of gramnegative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides, FEMS Microbiol. Ecol., 25, 43-61. crossref(new window)

Manz, W., Szewzyk, U., Ericsson, P., Amann, R., Schleifer, K. H., Stenström, T. A., 1993, In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes, Appl. Environ. Microbiol., 59, 2293-2298.

Meier, H., Amann, R., Ludwig, W., Schleifer, K. H., 1999, Specific oligonucleotide probes for In situ detection of a major group of gram-positive bacteria with Low DNA G+C content, Syst. Appl. Microbiol., 22, 186-196. crossref(new window)

Neef, A., Amann, R., Schlesner, H., Scheleifer, K., 1998, Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes, Microbiol., 144(12), 3257-3266. crossref(new window)

Nubel, U., Garcia-Pichel, F., Muyzer, G., 1997, PCR primers to amplify 16S rRNA genes from cyanobacteria, Appl. Environ. Microbiol., 63, 3327-3332.

Prescott, L. M., Harley, J. P., Klein, D. A., 2002, Microbiology, McGraw-Hill Higher Education, New-York.

Seredynska-Sobecka, B., Tomaszewska, M., Janus, M., Morawski, A. W., 2006, Biological activation of carbon filters, Water Res., 40, 355-363. crossref(new window)

Servais, P., Billen, G., Bouillot, P., 1994, Biological colonization of granular activated carbon filters in drinking-water treatment, J. Environ. Eng., 120(4), 888-899. crossref(new window)

Son, H. J., Park, H. K., Lee, S. A., Jung, E. Y., Jung, C. W., 2005, The characteristics of microbial community for biological activated carbon in water treatment plant, Environ. Eng. Res., 27(12), 1311-1320.

Son, H. J., Roh, J. S., Kang, L. S., 2004, Determination of BDOCrapid and BDOCslow using batch bio-reactor, K. Society on Water Environ., 20(4), 357-364.

Son, H. J., Yoo, S. J., Roh, J. S., Yoo, P. J., 2009, Biological activated carbon (BAC) process in water treatment, Environ. Eng. Res., 31(4), 308-323.

Son, H. S., Kim, M., Jeing, S. Y., Kim, H. Y., Park, G. T., Kim, M. J., Ryu, E. Y., Lee, S. J., 2008, Anaysis of bacterial community structure of biological activated carbon process in drinking water treatment plant using FISH, J. Environ. Sci., 17(5), 555-564.

Stewart, M. H., Wolfe, R. L., Means, E. G., 1990, Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking-water, Appl. Environ. Microbiol., 56(12), 3822-3829.

Suzuki, D., Ueki, A., Amaishi, A., Ueki, K., 2007, Diversity of substrate utilization and growth characteristics of sulfate-reducing bacteria isolated from estuarine sediment in Japan, J. Gen. Appl. Microbiol., 53(2), 119-132. crossref(new window)

Velten, S., Hammes, F., Boller, M., Egli, T., 2007, Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination, Water Res., 41, 1973-1983. crossref(new window)

Wagner, M., Amann, R., Lemmer, H., Scheleifer, K., 1993, Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure, Appl. Environ. Microbiol., 59(5), 1520-1525.

Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., Schleifer, K. H., 1994, Development of an rRNA-targeted oligonucleotide probe specific for the genus acinetobacter and its application for in situ monitoring in activated sludge, Appl. Environ. Microbial., 60(3), 792-800.

Wakelin, S. A., Page, D. W., Pavelic, P., Gregg, A. L., Dillon, P. J., 2010, Rich microbial communities inhabit water treatment biofilters and are differentially affected by filter type and sampling depth, Water Sci. & Technol.: Water Suppl., 10(2), 145-156. crossref(new window)

Wang, J., Jenkins, C., Webb, R. I., Fuerst, J. A., 2002, Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater, Appl. Environ. Microbiol., 68(1), 417-422. crossref(new window)