JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Temperature, Pressure, and Air Flow Rate on VOCs Desorption for Gasoline Vapor Recovery
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Temperature, Pressure, and Air Flow Rate on VOCs Desorption for Gasoline Vapor Recovery
Lee, Song-Woo; Na, Young-Soo; Kam, Sang-Kyu; Lee, Min-Gyu;
  PDF(new window)
 Abstract
Desorption characteristics of VOCs were investigated for the effective recovery of gasoline vapor. The adsorption capacity and desorption capacity were excellent at relatively low temperatures. The differences in the desorption capacity were not large in the condition; desorption temperature , desorption pressure 760 mmHg, inlet air flow rate 0.5 L/min, but were relatively great in the condition; desorption temperature , desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min. The desorption ability of pentane was increased to about 81.4%, and the desorption ability of hexane was increased to about 102%, also the desorption ability of toluene was increased to about 156.7% by changes of temperature, pressure, inlet air flow rate in the experimental conditions. The optimum desorption condition for the effective recovery of VOCs was in the conditions; desorption temperature , desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min.
 Keywords
Gasoline vapor;Recovery;Desorption;VOCs;Pentane;Hexane;Toluene;
 Language
Korean
 Cited by
1.
유증기를 구성하는 주요 10종류 성분의 온도에 따른 흡·탈착특성 비교,이송우;나영수;이민규;

Journal of Environmental Science International, 2014. vol.23. 9, pp.1593-1600 crossref(new window)
 References
1.
Chue, K., Park, Y. K., Jeon, J. K., 2004, Development of adsorption buffer and pressure swing adsorption (PSA) unit for gasoline vapor recovery, Korean J. Chem. Eng,. 21(3), 676-679. crossref(new window)

2.
Khan, F. I., Ghoshal, A. K., 2000, Removal of volatile organic compound from polluted air, J. of Loss Prevention in the Process Industries, 13, 527-545. crossref(new window)

3.
Lee, H. J., Lee, H. K., Park, G. I., Ro, S. G., Choi, H. S., Lee, Y. T., 1999, Adsorption property of water vapor on the modified natural zeolite, J. Korean Soc. Environ. Engrs, 21(4), 643-651.

4.
Lee, M. G., Lee, S. W., Lee, S. H., 2006, Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixedbed reactor, Korean J. Chem. Eng., 23(5), 773-778. crossref(new window)

5.
Lee, S. W., Cheon, J. K., Park, H. J., Lee, M. G., 2008a, Adsorption characteristics of binary vapors among acetone, MEK, benzene, and toluene, Korean J. Chem. Eng., 25(5), 1154-1159. crossref(new window)

6.
Lee, S. W., Kam, S. K., Lee, M. G., 2007, Comparison of breakthrough characteristics for binary vapors composed of acetone and toluene based on adsorption intensity in activated carbon fixed-bed reactor, J. Ind. Eng. Chem., 13(6), 911-916.

7.
Lee, S. W., Na, Y. S., An, C. D., Lee, M. G., 2011a, Comparison of adsorption characteristics on zeolite 13X and silica-aluminar, J. Environ. Sci., 20(6), 729-736. crossref(new window)

8.
Lee, S. W., Na, Y. S., An, C. D., Lee, M. G., 2011b, Adsorption characteristics of water vapor on zeolite, J. Environ. Sci., 20(5), 667-672. crossref(new window)

9.
Lee, S. W., Na, Y. S., An, C. D., Lee, M. G., 2012a, Comparison of adsorption and desorption characteristics of acetone vapor and toluene vapor on activated carbons according to pore structure, J. Environ. Sci., 21(10), 1195-1202. crossref(new window)

10.
Lee, S. W., Na, Y. S., An, C. D., Lee, M. G., 2012b, Comparison of desorption characteristics of water vapor on the types of zeolites, J. Environ. Sci., 21(12), 1463-1468. crossref(new window)

11.
Lee, S. W., Park, H. J., Lee, S. H., Lee, M. G., 2008b, Comparison of adsorption characteristics according to polarity difference of acetone vapor and toluene vapor on silica-aluminar fixed-bed reactor, J. Ind. Eng. Chem., 13, 10-17. crossref(new window)

12.
Popescu, S., Joly, J. P., Carre, J., Danatoiu, C., 2003, Dynamic adsorption and temperature-programed desorption of VOCs (toluene, butyl acetate and butanol) on activated carbons, Carbon, 41, 739-748. crossref(new window)

13.
San Miguel, G., Lambert, S. D., Graham, J. D., 2001, The regeneration of field-spent granular-activated carbon, Wat. Res., 35(11), 2740-2748. crossref(new window)

14.
Shie, J. L., Lu, C. Y., Chang, C. Y., 2003, Recovery of gasoline vapor by a combined process of two-stage dehumidification and condensation, J. Chin. Inst. Chem. Engrs., 34(6), 605-616.