JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Genotoxicity (DNA damage) on Blood Cells of Parrot Fish (Oplegnathus fasciatus) Exposed to Acidified Seawater Making of CO2
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Genotoxicity (DNA damage) on Blood Cells of Parrot Fish (Oplegnathus fasciatus) Exposed to Acidified Seawater Making of CO2
Choi, Tae Seob; Lee, Ji-Hye; Sung, Chan-Gyoung; Lee, Jung-Suk; Park, Young-Gyu; Kang, Seong-Gil;
  PDF(new window)
 Abstract
DNA damage such as genotoxicity was identified with comet assay, which blood cell of a marine parrot fish (Oplegnathus fasciatus) was exposed to an acidified seawater, lowered pH gradient making of gas. The gradient of pH were 8.22, 8.03, 7.81, 7.55 with control as HBSS solution with pH 7.4. DNA tail moment of fish blood cell was exposed seawater of pH 8.22 condition, on the other hand, DNA tail moment exposed acidified seawater of pH 7.55 lowest condition. The approximate difference with level of DNA damage was 2.9 times between highest and lowest of pH. DNA damage with decreasing pH was significantly increased with DNA tail moment on blood cell of marine fish (ANOVA, p < 0.001). Ocean acidification, especially inducing the leakage of sequestered in geological structure is a consequence from the burning of fossil fuels, and long term effects on marine habitats and organisms are not fully investigated. The physiological effects on adult fish species are even less known. This result shown that the potential of dissolved in seawater was revealed to induce the toxic effect on genotoxicity such as DNA breakage.
 Keywords
Fish;Carbon dioxide;Seawater pH;Genotoxicity;DNA damage;Comet assay;
 Language
Korean
 Cited by
 References
1.
Adams, S. M., Brown, A. M., Goede, R. W., 1993, A quantitative health assessment index for rapid evaluation of fish condition in the field, Trans. Am. Fish. Soc., 122, 63-73. crossref(new window)

2.
Ambrose, Jr. W. G., Clough, L. M., Tilney, P. R., Beer, L., 2001., Role of echinoderms in benthic remineralization in the Chukchi Sea, Mar. Biol., 139, 937-949. crossref(new window)

3.
Andersson, A. J., Mackenzie, F. T., Lerman, A., 2005, Coastal ocean and carbonate systems in the high $CO_{2}$ world of the Anthropocene, Am. J. Sci., 305, 875-918. crossref(new window)

4.
Brennan, S. T., Hughes, A. V., Friedmann, S. J., Burruss, R. C., 2004, Natural gas reservoirs with high $CO_{2}$ concentrations as natural analogues for $CO_{2}$ storage, Conf. Proceedings, 7th Greenhouse Gas Control Technologies Conference (GHGT-7), IEA Greenhouse Gas Programme, Vancouver, Canada.

5.
Caldeira, K., Wickett, M. E., 2003, Anthropogenic carbon and ocean pH. Nature, 425, pp. 365. crossref(new window)

6.
Caldeira, K., Wickett, M. E., 2005, Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res., 110, C09S04.

7.
Campbel, P. G. C., Stokes, P. M., 1985, Acidification and toxicity of metals to aquatic biota, Canadian J. of Fish. & Aqua. Sci., 42, 2034-2049. crossref(new window)

8.
Claiborne, J. B., Walton, J. S., Compton-McCullough, D., 1994, Acid-base regulation, branchial transfers and renal output in a marine teleost fish (the long-horned sculpin; Myoxocephalus octodecimspinosus) during exposure to low salinities, Exp. Biol., 193, 79-95.

9.
Claxton, L. D., Houk, V. S., Hughes, T. J., 1998, Genotoxicity of industrial wastes and effluents, Mutat. Res., 410, 237-243. crossref(new window)

10.
Collins, A. R., Oscoz, A. A., Brunborg, G., Gaivao, I., Giovannelli, L., Kruszewski, M., Smith, C. C., Tina R., 2008, The comet assay: topical issues. Mutagenesis, 23, 143-151. crossref(new window)

11.
De Flora, S., Zanacchi, P., Bennicelli, C., Camoirano, A., Basso, C., Bagnasco, M., Izzotti, A., Badolati, G. S., 1989, Genotoxicity biotranformation and interactions of marine pollutants as related to genetic and carciongenic hazards. In "Carciongenic, mutagenic and teratogenic marine pollutants. Impacts on human health and the environment. Advances in applied biotechnology series. Vol. 5. pp 284. Portfolio Publishing Company, Woodlands, Texas, US.

12.
Diaz, M. M., Maberly, S. C., 2009, Carbon concentrating mechanisms in acidophilic algae, Phycologia 48, 77-85. crossref(new window)

13.
Fabry, V. J., Seibel, B. A., Feely, R. A., Orr, J. C., 2008, Impacts of ocean acidification on marine fauna and ecosystem processes, ICES J. of Mar. Sci., 65, 414-432. crossref(new window)

14.
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Keleypas, J., Fabry, V. J., Milero, F. J., 2004, Impact of anthropogenic $CO_{2}$ on the $CaCO_{3}$ system in the oceans, Science, 305, 362-366. crossref(new window)

15.
Ghafar, S. A. A., Ismail, M., Yazan, L. S., Fakurazi, S., Ismail, N., Chan, K. W., Tahir, P. M., 2013, Cytotoxic activity of Kenaf Seed Oils from supercritical carbon dioxide fluid extraction towards human colorectal cancer (HT29) cell lines, Evid-Based Compl. Alt. Med., 2013,.1-8.

16.
Gunnarsson, F., 2010, The honour thesis in ecotoxicology - Sublethal effects of low pH in two fish species (Gasterosteus aculeatus and Gadus morhua), Goteborg university. Department of Zoological Institution. 30 pp.

17.
Hayashi, M., Kita, J., Ishimatsu, A., 2004, Comparison of the acid-base responses to $CO_{2}$ and acidification in Japanese flounder (Paralichthys olivaceus). Mar. Pol. Bull., 49, 1062-1065. crossref(new window)

18.
Hovhannisyan, G. G., 2010, Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology, Mol. Cytogen., 3, 17. crossref(new window)

19.
Intergovernmental Panel on Climate Change (IPCC), 2005, Carbon Dioxide Capture and Storage, IPCC Special Report, Cambridge University Press, New York.

20.
Ishimatsu, A., Kikkawa, T., Hayashi, M., Lee, K. S., Kita, J., 2004, Effects of $CO_{2}$ on Marine Fish: Larvae and Adults. J. of Oceanogra., 60, 731-741. crossref(new window)

21.
Kikkawa, T., Kita, J., Ishimatsu, A., 2004, Comparison of the lethal effect of $CO_{2}$ and acidification on red sea bream (Pagrus major) during the early developmental stages, Mar. Pollut. Bull. 48, 108-110. crossref(new window)

22.
Kim, G. B., Lee, R. F., Maruya, K. A., 2003, Application of single cell gel electrophoresis for detection of DNA single strand breaks in DNA of fish blood cell. J. Kor. Fish Soc., 36, 346-351. crossref(new window)

23.
Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J. P., Langdon, C., Opdyke, B. N., 1999, Geochemical consequences of increased atmospheric carbon dioxide on coral reefs, Science, 284, 118-120. crossref(new window)

24.
Kleypas, J. A., Feely, R. A., Fabry, V. J., Langdon, C., Sabine, C. L., Robbins, L. L., 2006, Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research, Report of a workshop held on 18-20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the U.S. Geological Survey.

25.
Knutzen, J., 1981, Effects of decreased pH on marine organism, Mar. Pollut. Bull., 12, 25-29. crossref(new window)

26.
Kuwatani, Y., Nishii, T., 1969, Effects of decreased pH of culture water on the growth of the Japanese pearl oyster, Bull. Japanese Soc. Sci. Fish., 35, 342-350. crossref(new window)

27.
Lee, K. S., Kita, J., Ishimatsu, A., 2003, Effects of lethal levels of environmental hypercapnia on cardiovascular and blood-gas status in yellowtail, Seriola quinqueradiata. Zoolog. Sci., 20, 417-422. crossref(new window)

28.
Li, Y., Wu, Y., Chen, Y., Kong, Z., 2006, Genotoxicity evaluation and a primary risk assessment of organic pollutants in the drinking water sources of Nanjing, China, J. of Environ. Sci., 18, 983-988. crossref(new window)

29.
Michaelidis, B., Spring, A., Portner, H., 2007, Effects of long-term acclimation to environmental hypercapnia on extracellular acid-base status and metabolic capacity in Mediterranean fish Sparus aurata, Mar. Biol., 150, 1417-1429. crossref(new window)

30.
Munday, P. L., Dixson, D. L., Donelson, J. M., Jones, G. P., Pratchett, M. S., Devitsina, G. V., 2009, Ocean acidification impairs olfactory discrimination and homing ability of a marine fish, Proc. Nat. Acad. Sci. U.S.A, 106, 1848-1852. crossref(new window)

31.
Perry, S. F., Gilmour, K. M., 2006, Acid-base balance and $CO_{2}$ excretion in fish: unanswered questions and emerging models, Respir. Physiol. Neurobiol., 154, 199-215. crossref(new window)

32.
Portner, H. O., Langenbuch, M., Reipschlager, A., 2004, Biological impact of elevated ocean $CO_{2}$ concentrations: lessons from animal physiology and earth history, J. of Oceanogra., 60, 705-718. crossref(new window)

33.
Royal Society, 2005, Ocean acidification due to increasing atmospheric carbon dioxide, Policy Document 12/05, The Royal Society, London.

34.
Sabine, C. L., 2004, The Oceanic Sink for Anthropogenic $CO_{2}$, Science, 305, 367-371. crossref(new window)

35.
Sabine, C. L., Feely, R. A., Gruber, N., 2004, The oceanic sink for anthropogenic $CO_{2}$, Science, 305, 367-371. crossref(new window)

36.
Seibel, B. A., Walsh, P. J., 2003, Biological impacts of deep sea carbon dioxide injection inferred from indices of physiological performance, J. Exp. Biol., 206, 641-650. crossref(new window)

37.
Singh, N. P., McCoy, M. T., Tice, R. R., 2008, A simple technique for quantitation of low levels of DNA damage in individual cell, Exp. Cell Res., 175, 184-191.

38.
Steele, J. H., Thorpe, S. A., Turekian, K. K., 2010, Marine chemistry and geochemistry, A derivative of encyclopedia of ocean sciences, 2nd Edition. Elsevier Ltd. 605 pp.

39.
Sunda, W. G., Guillard, R. R. L., 1976, The relationship between cupric ion activity and the toxicity of copper to phytoplankton, J. Mar. Res., 34, 511-529.

40.
Thornton, C., Daniel, O., 2009, Effect of low pH on carbohydrate production by a marine planktonic diatom (Chaetoceros muelleri). Research letters in biology., 20, 4 pages, Article ID 105901.

41.
Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., Miyamae, Y., Rojas, E., Ryu, J. C., Sasaki, Y. F., 2000, Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing, Environ. Mol. Mutagen., 35, 206-221. crossref(new window)

42.
Wetzel, R. G., 1983, Limnology, 2nd ed. Saunders College Publishing, Philadelphia, PA.

43.
Widdicombe, S., Spicer, J. I., 2008, Predicting the impact of ocean acidification on benthic biodiversity: What can animal physiology tell us? Mar. Biol. Ecol., 366, 187-197.

44.
Wilson, J. T., Pascoe, P. L., Parry, J. M., Dixon, D. R., 1998, Evaluation of the comet assay as a method for the detection of DNA damage in the cells of a marine invertebrate, Mytilus edulis L. (Mollusca: Pelecypoda) Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis.

45.
Wong, V. W. C., Szeto, Y. T., Collins, A. R., Benzie, I. F. F., 2005, The comete assay: a biomonitoring tool for nutraceutical research, Curr. Top. Nutraceut. Res., 3, 1-14.

46.
Yoon, C. H., 2002, Encyclopedia of Fish in Korea, Academy Press, 747pp.