Advanced SearchSearch Tips
Crystallinity of CrOx/TiO2 Catalysts and Their Activity in TCE Oxidation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Crystallinity of CrOx/TiO2 Catalysts and Their Activity in TCE Oxidation
Kim, Moon-Hyeon; Lee, Hyo-Sang;
  PDF(new window)
Titania-supported chromium oxides with different loadings have been embarked in catalytic oxidation of trichloroethylene (TCE) to inquire association of the formation of crystalline with catalytic performances. A better activity in the oxidative TCE decomposition at chosen temperatures was represented when chromium oxides () had been dispersed on pure anatase-type (DT51D) rather than on phase-mixed and sulfur-contained ones such as P25 and DT51. The extent of TCE oxidation at temperatures below was a strong function of content in /DT51D , and a noticeable point was that the catalyst has two optimal loadings in which the lowest and values were measured for the TCE oxidation. This behavior in the activity with respect to amounts could be associated with the formation of crystalline on the support surface, that is less active for the oxidation reaction, and an easier mobility of the surface oxygen existing in noncrystalline species with higher oxidation states, such as and .
Trichloroethylene;Catalytic oxidation;Supported chromium oxides;Titania;Crystalline chromium oxides;
 Cited by
Agarwal, S. K., Spivey, J. J., Butt, J. B., 1992, Deep oxidation of hydrocarbons, Appl. Catal. A, 81, 239-255. crossref(new window)

Bond, G. C., Sadeghi, N., 1975, Catalysed destruction of chlorinated hydrocarbons, J. Appl. Chem. Biotech., 25, 241-248.

Corella, J., Toledo, J. M., Padilla, A., 2000, On the selection of the catalyst among the commercial platinum-based ones for total oxidation of some chlorinated hydrocarbons, Appl. Catal. B, 27, 243-256. crossref(new window)

Farrell, J., Luo, J., Blowers, P., Curry, J., 2002, Experimental and molecular mechanics and ab initio investigation of activated adsorption and desorption of trichloroethylene in mineral micropores, Environ. Sci. Technol., 36, 1524-1531. crossref(new window)

Hardcastle, F. D., Wachs, I. E., 1988, Raman spectroscopy of chromium oxide supported on $Al_2O_3$, $TiO_2$ and $SiO_2$: A comparative study, J. Mol. Catal., 46, 173-186. crossref(new window)

Hong, C. W., Kim, M. H., Nam, I. S., Kim, Y. G., 1998, Effect of supports and transition metal oxides on the catalytic decomposition of trichloroethylene, Korean Chem. Eng. Res., 36, 206-214.

Hung, S. L., Pfefferle, L. D., 1989, Methyl chloride and methylene chloride incineration in a catalytically stabilized thermal combustor, Environ. Sci. Technol., 23, 1085-1091. crossref(new window)

Intriago, L., Diaz, E., Ordonez, S., Vega, A., 2006, Combustion of trichloroethylene and dichloromethane over protonic zeolites: Influence of adsorption properties on the catalytic performance, Micropor. Mesopor. Mater., 91, 161-169. crossref(new window)

Ivanova, T., Gesheva, K., Cziraki, A., Szekeres, A., Vlaikova, E., 2008, Structural transformations and their relation to the optoelectronic properties of chromium oxide thin films, J. Phys., 113, 1-5.

Kim, M. H., Choo, K. H., 2005, On-stream activity and surface chemical structure of $CoO_x/TiO_2$ catalysts for continuous wet TCE oxidation, J. Environ. Sci., 14, 221-230. crossref(new window)

Kim, M. H., Kim, D. W., 2011, Parametric study on the deactivation of supported $Co_3O_4$ catalysts for low temperature CO oxidation, Chin. J. Catal., 32, 762-770. crossref(new window)

Kosusko, M., Nunez, C. M., 1990, Destruction of volatile organic compounds using catalytic oxidation, J. Air Waste Manage. Assoc., 40, 254-259.

Kulazynski, M., van Ommen, J. G., Trawczynski, J., Walendiewski, J., 2002, Catalytic combustion of trichloroethylene over $TiO_2$-$SiO_2$ supported catalysts, Appl. Catal., 36, 239-247. crossref(new window)

Manning, M. P., 1984, Fluid bed catalytic oxidation: An underdeveloped hazardous waste disposal technology, Hazard. Waste, 1, 41-65. crossref(new window)

Mars, P., van Krevelen, D. W., 1954, Oxidations carried out by means of vanadium oxide catalysts, Chem. Eng. Sci., 3, 41-59. crossref(new window)

Miranda, B., Diaz, E., Ordonez, S., Vega, A., Diez, F. V., 2007, Oxidation of trichloroethene over metal oxide catalysts: Kinetic studies and correlation with adsorption properties, Chemosphere, 66, 1706-1715. crossref(new window)

Moretti, E. C., 2001, Practical solutions for reducing volatile organic compounds and hazardous air pollutants, CWRT, AIChE, New York, NY, USA, 1-150.

Scharf, U., Schneider, H., Baiker, A., Wokaun, A., 1994, Chromia supported on titania: III. Structure and spectroscopic properties, J. Catal., 145, 464-478. crossref(new window)

Rachapudi, R., Chintawar, P. S., Greene, H. L., 1999, Aging and structure/activity characteristics of Cr-ZSM-5 catalysts during exposure to chlorinated VOCs, J. Catal., 185, 58-72. crossref(new window)

Vuurman, M. A., Hardcastle, F. D., Wachs, I. E., 1993, Characterization of $CrO_3/Al_2O_3$ catalysts under ambient conditions: Influence of coverage and calcination temperature, J. Mol. Catal., 84, 193-205. crossref(new window)

Weldon, J., Senkan, S. M., 1986, Catalytic combustion of $CH_3Cl$ by $Cr_2O_3$, Combust. Sci. Technol., 47, 229-237. crossref(new window)

Yang, W. H., Kim, M. H., 2006, Oxidative decomposition of TCE over $TiO_2$-supported metal oxide catalysts, J. Environ. Sci., 15, 221-227. crossref(new window)

Yim, S. D., Nam, I. S., 2004, Characteristics of chromium oxides supported on $TiO_2$ and $Al_2O_3$ for the decomposition of perchloroethylene, J. Catal., 221, 601-611. crossref(new window)

Yim, S. D., Koh, D. J., Nam, I. S., Kim, Y. G., 2000a, Effect of the catalyst supports on the removal of perchloroethylene (PCE) over chromium oxide catalysts, Catal. Lett., 64, 201-207. crossref(new window)

Yim, S. D., Chang, K. H., Koh, D. J., Nam, I. S., Kim, Y. G., 2000b, Catalytic removal of perchloroethylene (PCE) over supported chromium oxide catalysts, Catal. Today, 63, 215-222. crossref(new window)