Advanced SearchSearch Tips
Zeolites: Their Features as Pressure Swing Adsorbents and CO2 Adsorption Capacity
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Zeolites: Their Features as Pressure Swing Adsorbents and CO2 Adsorption Capacity
Kim, Moon-Hyeon; Cho, Il-Hum; Choi, Sang-Ok; Choo, Soo-Tae;
  PDF(new window)
Industrial gas drying, dilute gas mixtures purification, air fractionation, hydrogen production from steam reformers and petroleum refinery off-gases, etc are conducted by using adsorptive separation technology. The pressure swing adsorption (PSA) has certain advantages over the other methods, such as absorption and membrane, that are a low energy requirement and cost-effectiveness. A key component of PSA systems is adsorbents that should be highly selective to a gas being separated from its mixture streams and have isotherms suitable for the operation principle. The six standard types of isotherms have been examined in this review, and among them the best behavior in the adsorption of as a function of pressure was proposed in aspects of maximizing a working capacity upon excursion between adsorption and desorption cycles. Zeolites and molecular sieves are historically typical adsorbents for such PSA applications in gas and related industries, and their physicochemical features, e.g., framework, channel structure, pore size, Si-to-Al ratio (SAR), and specific surface area, are strongly associated with the extent of adsorption at given conditions and those points have been extensively described with literature data. A great body of data of adsorption on the nanoporous zeolitic materials have been collected according to pressure ranges adsorbed, and these isotherms have been discussed to get an insight into a better adsorbent for PSA processes.
Adsorbents;Zeolites;Adsorptive separation;Pressure swing adsorption;Isotherms;
 Cited by
Ahn, H. W., Lee, C. H., 2004, Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds, Chem. Eng. Sci., 59, 2727-2743. crossref(new window)

Akten, E. D., Siriwardane, R. V., Sholl, D. S., 2003, Monte carlo simulation of single-and binarycomponent adsorption of $CO_2$, $N_2$, and $H_2$ in zeolite Na-4A, Energy Fuels, 17, 977-983. crossref(new window)

Argauer, R. J., Landolt, G. R., 1972, Crystalline zeolite ZSM-5 and method of preparing the same, U.S. Patent 3,702,886A.

Barrer, R. M., 1948, Synthesis and reactions of mordenite, J. Chem. Soc., 2158-2163. crossref(new window)

Barthomeuf, D., 2003, Framework induced basicity in zeolites, Micropor. Mesopor. Mater., 66, 1-14. crossref(new window)

Barrett, P. A., Diaz-Cabanas, M. J., Camblor, M. A., 1999, Crystal structure of zeolite MCM-35 (MTF), Chem. Mater., 11, 2919-2927. crossref(new window)

Blackwell, C. S., Broach, R. W., Gatter, M. G., Holmgren, J. S., Jan, D. Y., Lewis, G. J., Mezza, B. J., Messa, T. M., Miller, M. A., Moscoso, J. G., Patton, R. L., Rohde, L. M., Schoonover, M. W., Sinkler, W., Wilson, B. A., Wilson, S. T., 2003, Open-framework materials synthesized in the $TMA^+/TEA^+$ mixedtemplate system: The new low Si/Al ratio zeolites UZM-4 and UZM-5, Angew. Chem. Int. Ed., 42, 1737-1740. crossref(new window)

Breck, D. W., Eversole, W. G., Milton, R. M., Reed, T. B., Thomas, T. L., 1956, Crystalline zeolites. I. The properties of a new synthetic zeolite, Type A, J. Am. Chem. Soc., 78, 5963-5971. crossref(new window)

Brunauer, S., Deming, L. S., Deming, W. E., Teller, E., 1940, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc., 62, 1723-1732. crossref(new window)

Cavenati, S., Grande, C. A., Rodrigues, A. E., 2004, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, J. Chem. Eng. Data, 49, 1095-1101. crossref(new window)

Chatelain, T., Patarin, J., Fousson, E., Soulard, M., Guth, J. L., Schulz, P., 1995, Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template, Micropor. Mater., 4, 231-238. crossref(new window)

Chokkalingam, A., Kawagoe, H., Watanabe, S., Moriyama, Y., Komura, K., Kubota, Y., Kim, J. H., Seo, G., Vinu, A., Sugi, Y., 2013, Isopropylation of biphenyl over ZSM-12 zeolites, J. Mol. Catal. A, 367, 23-30. crossref(new window)

Corma, A., Novarro, M, T., Perez-Parlento, J., 1994, Synthesis of an ultralarge pore titanium silicalite isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons, J. Chem. Soc., Chem. Commun., 147-148.

Corma, A., Rey, F., Rius, J., Sabater, M. J., Valencia, S., 2004a, Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites, Nature, 431, 287-290. crossref(new window)

Corma, A., Diaz-Cabanas, M. J., Rey, F., Nicolopoulus, S., Boulahya, K., 2004b, ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14-and 12-ring channels, and its catalytic implications, Chem. Commun., 1356-1357.

Cote, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J., Yaghi, O. M., 2005, Porous, crystalline, covalent organic frameworks, Science, 310, 1166-1170. crossref(new window)

Cronstedt, A. F., 1756, Ron och beskriting om en obekant barg ant, som kallas zeolites, Kongl Vetenskaps Akademiens Handlingar Stockholm, 17, 120-130 (in Swedish).

D'Alessandro, D. M., Smit, B., Long, J. R., 2010, Carbon dioxide capture: Prospects for new materials, Angew. Chem. Int. Ed., 49, 6058-6082. crossref(new window)

de St Claire-Deville, H., 1862, Reproduction de la levyne, Comptes rendus hebdomadaires des seances de l'Academie des sciences, 54, 324-327 (in French).

Delgado, J. A., Uguina, M. A., Gomez, J. M., Ortega, L., 2006, Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na-and H-mordenite at high pressures, Sep. Purif. Technol., 48, 223-228. crossref(new window)

Densakulprasert, N., Wannatong, L., Chotpattananont, D., Hiamtup, P., Sirivat, A., Schwank, J., 2005, Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO, Mater. Sci. Eng. B, 117, 276-282. crossref(new window)

Diaz, E., Munoz, E., Vega, A., Ordonez, S., 2008, Enhancement of the $CO_2$ retention capacity of X zeolites by Na-and Cs-treatments, Chemosphere, 70, 1375-1382. crossref(new window)

Dunne, S. R., 2010, Industrial gas phase adsorptive separations, in: Kulprathipanja, S. (ed.), Zeolites in Industrial Separation and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 273-305.

Dunne, J. A., Mariwala, R., Rao, M., Sircar, S., Gorte, R. J., Myers, A. L., 1996a, Calorimetric heats of adsorption and adsorption isotherms. 1. $O_2$, $N_2$, Ar, $CO_2$, $CH_4$, $C_2H_6$, and $SF_6$ on silicalite, Langmuir, 12, 5888-5895. crossref(new window)

Dunne, J. A., Rao, M., Sircar, S., Gorte, R. J., Myers, A. L., 1996b, Calorimetric heats of adsorption and adsorption isotherms. 2. $O_2$, $N_2$, Ar, $CO_2$, $CH_4$, $C_2H_6$, and $SF_6$ on NaX, H-ZSM-5, and Na-ZSM-5 zeolites, Langmuir, 12, 5896-5904. crossref(new window)

El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., Cote, A. P., Taylor, R. E., O'Keeffe, M., Yaghi, O. M., 2007, Designed synthesis of 3D covalent organic frameworks, Science, 316, 268-272. crossref(new window)

Flanigen, E. M., Broach, R. W., Wilson, S. T., 2010, Introduction, in: Kulprathipanja, S. (ed.), Zeolites in Industrial Separation and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 1-26 and therein references.

Goj, A., Sholl, D. S., Akten, E. D., Kohen, D., 2002, Atomistic simulations of $CO_2$ and $N_2$ adsorption in silica zeolites: The impact of pore size and shape, J. Phys. Chem. B, 106, 8367-8375. crossref(new window)

Gregg, S. J., Sing, K. S. W., 1982, Adsorption, surface area and porosity, 2nd ed., Academic Press, London, 1-303.

Han, B., Lee, S. H., Shin, C. H., Cox, P. A., Hong, S. B., 2005, Zeolite synthesis using flexible diquaternary alkylammoniumions $(C_nH_{2n+1})_2HN^+(CH_2)_5N^+H(C_nH_2_{n+1})_2$ with n=1-5 as structure-directing agents, Chem. Mater., 17, 477-486. crossref(new window)

Hong, S. B., 2008, Use of flexible diquaternary structure-directing agents in zeolite synthesis: Discovery of zeolites TNU-9 and TNU-10 and their catalytic properties, Catal. Surv. Asia, 12, 131-144. crossref(new window)

Hudson, M. R., Queen, W. L., Mason, J. A., Fickel, D. W., Lobo, R. F., Brown, C. M., 2012, Unconventional, highly selective $CO_2$ adsorption in zeolite SSZ-13, J. Am. Chem. Soc., 134, 1970-1973. crossref(new window)

Inui, T., Kang, M., 1997, Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion, Appl. Catal. A, 164, 211-223. crossref(new window)

IZA, 2013,

Juntgen, H., 1977, New applications for carbonaceous adsorbents, Carbon, 15, 273-283. crossref(new window)

Kim, T. J., Ahn, W. S., Hong, S. B., 1996, Synthesis of zeolite ferrierite in the absence of inorganic cations, Micropor. Mater., 7, 35-40. crossref(new window)

Kim, M. H.,, Choi, S. O., Choo, S. T., 2013, Capability of $CO_2$ on metal-organic frameworks-based porous adsorbents and their challenges to pressure swing adsorption applications, Clean Technol., 19, in press.

Kim, S. H., Park, M. B., Min, H. K., Hong. S. B., 2009, Zeolite synthesis in the tetraethylammonium-tetramethylammonium mixed-organic additive system, Micropor. Mesopor. Mater., 123, 160-168. crossref(new window)

Krishna, R., van Baten, J. M., 2012, A comparison of the $CO_2$ capture characteristics of zeolites and metal-organic frameworks, Sep. Purif. Technol., 87, 120-126. crossref(new window)

Kulprathipanja, S., James, R. B., 2010, Overview in zeolites adsorptive separation, in: Kulprathipanja, S. (ed.), Zeolites in Industrial Separation and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 173-202.

Kuznicki, S. M., 1989, Large-pored crystalline titanium molecular sieve zeolites, U.S. Patent 4,853,202.

Kuznicki, S. M., Trush, K. A., Allen, F. M., Levine, S. M., Hamil, M. M., Hayhurst, D. T., Mansom, M., 1992, Synthesis and adsorptive properties of titanium silicate molecular sieves, in: Ocelli, M. L. and Robson, H. E. (eds.), Synthesis of Microporous Materials, Molecular Sieves, Vol. 1, Van Nostrand Reinhold, New York, 427-453.

Lee, S. H., Lee, D. K., Shin, C. H., Paik, W. C., Lee, W. M., Hong, S. B., 2000, Synthesis of zeolite ZSM-57 and its catalytic evaluation for the 1-butene skeletal isomerization and n-octane cracking, J. Catal., 196, 158-166. crossref(new window)

Lee, J. K., Kim, Y. J., Lee, H. J., Kim, S. H., Cho, S. J., Nam, I. S., Hong S. B., 2011, Iron-substituted TNU-9, TNU-10, and IM-5 zeolites and their steam-activated analogs as catalysts for direct $N_2O$ decomposition, J. Catal., 284, 23-33. crossref(new window)

Lee, J. H., Park, M. B., Lee, J. K., Min, H. K., Song, M. K., Hong, S. B., 2010, Synthesis and characterization of ERI-type UZM-12 zeolites and their methanolto-olefin performance, J. Am. Chem. Soc., 132, 12971-12982. crossref(new window)

Lee, S. H., Shin, C. H., Choi, G. J., Park, T. J., Nam, I. S., Han, B., Hong, S. B., 2003, Zeolite synthesis in the presence of flexible diquaternary alkylammonium ions $(C_2H_5)_3N^+(CH_2)_nN^+(C_2H_5)_3$ with n=3-10 as structure-directing agents, Micropor. Mesopor. Mater., 60, 237-249. crossref(new window)

Leonard, R. J., 1927, The hydrothermal alteration of certain silicate minerals, Econ. Geol., 22, 18-43. crossref(new window)

Lewis, G. J., Miller, M. A., Moscoso, J. G., Wilson, B. A., Knight, L. M., Wilson, S. T., 2004a, Experimental charge density matching approach to zeolite synthesis, Stud. Surf. Sci. Catal., 154A, 364-372.

Lewis, G. J., Jan, D. Y., Mezza, B. J., Moscoso, J. G., Miller, M. A., Wilson, B. A., Wilson, S. T., 2004b, UZM-4: A stable Si-rich form of the BPH framework type, Stud. Surf. Sci. Catal., 154A, 118-125.

Li, S., Falconer, J. L., Noble, R. D., 2004, SAPO-34 membranes for $CO_2$/$CH_4$ separation, J. Membr. Sci., 241, 121-135. crossref(new window)

Li, J. R., Kuppler, R. J., Zhou, H. C., 2009, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev., 38, 1477-1504. crossref(new window)

Li, Y., Yi, H., Tang, X., Li, F., Yuan, Q., 2013, Adsorption separation of $CO_2$/$CH_4$ gas mixture on the commercial zeolites at atmosphere pressure, Chem. Eng. J., 229, 50-56. crossref(new window)

Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R., Liu, J., 2012, Progress in adsorption-based $CO_2$ capture by metal-organic frameworks, Chem. Soc. Rev., 41, 2308-2322. crossref(new window)

Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., Flanigen, E. M., 1984, Silicoaluminophosphate molecular sieves: Another new class of microporous crystalline inorganic solids, J. Am. Chem. Soc., 106, 6092-6093. crossref(new window)

McBain, J. W., 1932, The Sorption of Gases and Vapors by Solids, G. Routledge & Sons, London, 167-176.

McEwen, J., Hayman, J. D., Yazaydin, A. O., 2013, A comparative study of $CO_2$, $CH_4$ and $N_2$ adsorption in ZIF-8, zeolite-13X and BPL activated carbon, Chem. Phys., 412, 72-76. crossref(new window)

Mertens, M., Stromaier, K. G., 2004, Process for manufacture of molecular sieves, U.S. Patent 6,773,688.

Miller, M. A., Lewis, G. J., Moscoso. J. G., Koster, S., Modica, F., Gatter, M. G., Nemeth, L. T., 2007, Synthesis and catalytic activity of UZM-12, Stud. Surf. Sci. Catal., 170, 487-492. crossref(new window)

Millward, A. R., Yaghi, O. M., 2005, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127, 17998-17999. crossref(new window)

Milton, R. M., 1989, Molecular sieve science and technology: a historical perspective, in: Occelli, M. L., Robson, H. E. (eds.), Zeolite Synthesis, ACS Symposium Series 398, American Chemical Society, Washington D.C., 1-10.

Miyamoto, M., Fujioka, Y., Yogo, K., 2012, Pure silica CHA type zeolite for $CO_2$ separation using pressure swing adsorption at high pressure, J. Mater. Chem., 22, 20186-20189. crossref(new window)

Muller, M., Harvey, G., Prins, R., 2000, Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with $SiCl_4$ by $^1H$, $^{29}Si$ and $^{27}Al$ MAS NMR, Micropor. Mesopor. Mater., 34, 135-147. crossref(new window)

Palomino, M., Corma, A., Jorda, J. L., Rey, F., Valencia, S., 2012, Zeolite rho: A highly selective adsorbent for $CO_2$/$CH_4$ separation induced by a structural phase modification, Chem. Commun., 48, 215-217. crossref(new window)

Park, J. W., Lee, J. Y., Kim, K. S., Hong, S. B., Seo, G., 2008, Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions, Appl. Catal. A, 339, 36-44. crossref(new window)

Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M., Yaghi, O. M., 2006, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS, 103, 10186-10191. crossref(new window)

Pauling, L., 1930, The structure of some sodium and calcium aluminosilicates, PNAS, 16, 453-459. crossref(new window)

Pawlesa, J., Zukal, A., Cejka, J., 2007, Synthesis and adsorption investigations of zeolites MCM-22 and MCM-49 modified by alkali metal cations, Adsorption, 13, 257-265. crossref(new window)

Petrovic, I., Navrotsky, A., 1997, Thermochemistry of Na-faujasites with varying Si/Al ratios, Micropor. Mater., 9, 1-12. crossref(new window)

Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O'Keeffe, M., Yaghi, O. M., 2010, Synthesis, structure and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res., 43, 58-67. crossref(new window)

Palomino, M., Corma, A., Jorda, J. L., Rey, F., Valencia, S., 2012, Zeolite Rho: A highly selective adsorbent for $CO_2$/$CH_4$ separation induced by a structural phase modification, Chem. Commun., 48, 215-217. crossref(new window)

Palomino, M., Corma, A., Rey, F., Valencia, S., 2010, New insights on $CO_2$-methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs, Langmuir, 26, 1910-1917. crossref(new window)

Pamba, M., Maurin, G., Devautour, S., Vanderschueren, J., Giuntini, J. C., Renzo, F. D., Hamidi, F., 2000, Influence of framework Si/Al ratio on the $Na^+$/mordenite interaction energy, Phys. Chem. Chem. Phys., 2, 2027-2031 crossref(new window)

Plevert, J., Yamamoto, K., Chiari, G., Tatsumi, T., 1999, UTM-1: An eight-membered ring zeolite with the basic building chains of the MFI topology, J. Phys. Chem. B, 8647-8649.

Portilla, M. T., Llopis, F. J., Martinez, C., Valencia, S., Corma, A., 2011, Structure-reactivity relationship for aromatics transalkylation and isomerization process with TNU-9, MCM-22 and ZSM-5 zeolites, and their industrial implications, Appl. Catal. A, 393, 257-268. crossref(new window)

Prakash, A. M., Hartmann, M. H., Kevan, L., 1998, SAPO-35 molecular sieve: Synthesis, characterization and adsorbate interactions of Cu(II) in CuH-SAPO-35, Chem. Mater., 10, 932-941. crossref(new window)

Rachwalik, R., Olejniczak, Z., Sulikowski, B., 2005, Dealumination of ferrierite type zeolite: Physicochemical and catalytic properties, Catal. Today, 101, 147-154. crossref(new window)

Reed, T. B., Breck, D. W., 1956, Crystalline zeolites. II. Crystal structure of synthetic zeolite, Type A, J. Am. Chem. Soc., 78, 5972-5977. crossref(new window)

Robson, H. E., Shoemaker, D. P., Ogilvie, R. A., Manor, P. C., 1973, Synthesis and crystal structure of zeolite Rho-A new zeolite related to Linde Type A, Adv. Chem., 121, 106-115. crossref(new window)

Schimmel, H. G., Kearley, G. J., Nijkamp, M. G., Visserl, C. T., de Jong, K. P., Mulder, F. M., 2003, Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals, Chem. Eur. J., 9, 4764-4770. crossref(new window)

Schlenker, J. L., Higgins, J. B., Valyocsik, E. W., 1990, The framework topology of ZSM-57: A new synthetic zeolite, Zeolites, 10, 293-296. crossref(new window)

Sing, K. S. W., 1982, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 54, 2201-2218.

Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T., 1985, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57, 603-619.

Sircar, S., 2006, Basic research needs for design of adsorptive gas separation processes, Ind. Eng. Chem. Res., 45, 5435-5448. crossref(new window)

Siriwardane, R. V., Shen, M. S., Fisher, E. P., 2003, Adsorption of $CO_2$, $N_2$, and $O_2$ on natural zeolites, Energy Fuels, 17, 571-576. crossref(new window)

Siriwardane, R. V., Shen, M. S., Fisher, E. P., Poston, J. A., 2001, Adsorption of $CO_2$ on molecular sieves and activated carbon, Energy Fuels, 15, 279-284. crossref(new window)

Stewart, A., Johnson, D. W., Shannon, M. D., 1988, Synthesis and characterisation of crystalline aluminosilicate sigma-1, Stud. Surf. Sci. Catal., 37, 57-64. crossref(new window)

Suzuki, M., 1994, Activated carbon fiber: Fundamentals and applications, Carbon, 32, 577-586. crossref(new window)

Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., Corma, A., Mirodatos, C., 2009, Natural gas treating by selective adsorption: material science and chemical engineering interplay, Chem. Eng. J., 155, 553-566. crossref(new window)

Taramasso, M., Perego, G., Notari, B., 1983, Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, U.S. Patent 4,410,501A.

Taylor, W. H., 1930, The crystal structure of analcite $(NaAlSi_2O_6{\cdot}H_2O)$, Z. Kristallogr., 74, 1-19 (in German).

Thomas, B., Ramu, V. G., Gopinath, S., George, J., Kurian, M., Laurent, G., Drisko, G. L., Sugunan, S., 2011, Catalytic acetalization of carbonyl compounds over cation ($Ce^{3+}$, $Fe^{3+}$ and $Al^{3+}$) exchanged montmorillonites and $Ce^{3+}$-exchanged Y zeolites, Appl. Clay Sci., 53, 227-235. crossref(new window)

UNEP (the United Nations Environment Programme), 2013, The emissions gap report 2013: A UNEP synthesis report, Nairobi, Kenya.

Walton, K. S., Abney, M. B., LeVan, M. D., 2006, $CO_2$ Adsorption in Y and X zeolites modified by alkali metal cation exchange, Micropor. Mesopor. Mater., 91, 78-84. crossref(new window)

Wang, Q., Luo, J., Zhong, Z., Borgna, A., 2011, $CO_2$ capture by solid adsorbents and their applications: Current status and new trends, Energy Environ. Sci., 4, 42-55. crossref(new window)

Wei, X., Smirniotis, P. G., 2006, Development and characterization of mesoporosity in ZSM-12 by desilication, Micropor. Mesopor. Mater., 97, 97-106. crossref(new window)

Weigel, O., Steinhoff, E., 1925, Adsorption of organic liquid vapors by chabazite, Z. Kristallogr., 61, 125-154 (in German).

Wilson, S. T., Broach, R. W., Blackwell, C. S., Bateman, C. A., McGuire, N. K., Kirchner, R. M., 1999, Synthesis, characterization and structure of SAPO-56, a member of the ABC double-six-ring family of materials with stacking sequence AABBCCBB, Micropor. Mesopor. Mater., 28, 125-197. crossref(new window)

Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., Flanigen, E. M., 1982, Aluminophosphate molecular sieves: A new class of microporous crystalline inorganic solids, J. Am. Chem. Soc., 104, 1146-1147. crossref(new window)

Xu, X., Zhao, X., Sun, L., Liu, X., 2008, Adsorption separation of carbon dioxide, methane, and nitrogen on H${\beta}$ and Na-exchanged ${\beta}$-zeolite, J. Natural Gas Chem., 17, 391-396. crossref(new window)