Advanced SearchSearch Tips
Effects of Increased CO2 and Temperature on the Growth of Four Diatom Species (Chaetoceros debilis, Chaetoceros didymus, Skeletonema costatum and Thalassiosira nordenskioeldii) in Laboratory Experiments
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Increased CO2 and Temperature on the Growth of Four Diatom Species (Chaetoceros debilis, Chaetoceros didymus, Skeletonema costatum and Thalassiosira nordenskioeldii) in Laboratory Experiments
Hyun, Bonggil; Choi, Keun-Hyung; Jang, Pung-Guk; Jang, Min-Chul; Lee, Woo-Jin; Moon, Chang-Ho; Shin, Kyoungsoon;
  PDF(new window)
We examined the combined impacts of future increases of and temperature on the growth of four marine diatoms (Skeletonema costatum, Chaetoceros debilis, Chaetoceros didymus, Thalassiosira nordenskioeldii). The four strains were incubated under four different conditions: present (: 400ppm, temperature: ), acidification (: 1000ppm, temperature: ), global warming (: 400ppm, temperature: ), and greenhouse (: 1000ppm, temperature: ) conditions. Under the condition of higher temperatures, growth of S. costatum was suppressed, while C. debilis showed enhanced growth. Both C. didymus and T. nodenskioldii showed similar growth rates under current and elevated temperature. None of the four species appeared affected in their cell growth by elevated concentrations. Chetoceros spp. showed increase of pH per unit fluorescence under elevated concentrations, but no difference in pH from that under current conditions was observed for either S. costatum or T. nodenskioeldii, implying that Chetoceros spp. can take up more per cell than the other two diatoms. Our results of cell growth and pH change per unit fluorescence suggest that both C. debilis and C. didymus are better adapted to future oceanic conditions of rising water temperature and than are S. costatum and T. nodenskioeldii.
Future temperature and increase;Acidification;Global warming;Greenhouse;Diatom;
 Cited by
Enzyme activity highlights the importance of the oxidative pentose phosphate pathway in lipid accumulation and growth of Phaeodactylum tricornutum under CO2 concentration, Biotechnology for Biofuels, 2015, 8, 1  crossref(new windwow)
Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton, Journal of Applied Phycology, 2017, 1573-5176  crossref(new windwow)
Alley, R. B., Berntsen, T., Bindoff, N. L., Chen, Z., and others, 2007, Summary for policymakers, In: Solomon S, D Qin, M Manning, Z Chen and others (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York.

Baek, S. H., Kim, Y. O., 2010, The study of summer season in Jinhae Bay-Short-term changes of community structure and horizontal distribution characteristics of phytoplankton, Kor. J. Environ. Biol., 28(3), 115-124 [in Korean].

Burkhardt, S., Amoroso, G., Riebesell, U., Sultemeyer, D., 2001, $CO_{2}$ and $HCO_{3}$- uptake in marine diatoms acclimated to different $CO_{2}$ concentrations, Limnol. Oceanogr., 46, 1378-1391. crossref(new window)

Caldeira, K., Wickett, M.E., 2003, Anthropogenic carbon and ocean pH, Nature, 425:365. crossref(new window)

Chen, X., Gao, K., 2003, Effect of $CO_{2}$ concentrations on the activity of photosynthetic $CO_{2}$ fixation and Extracellular carbonic anhydrase in the marine, Chi. Sci. Bull., 48(23), 2616-2620. crossref(new window)

Choi J. K., Lee, E. H., Noh, J. H., Huh, S. H., 1997, The study on the phytoplankton bloom and primary productivity in lake Shihwa and adjacent coastal areas, J. Kor. Soc. Oceanogr., 2(2), 78-86 [in Korean].

Durbin, E. G., 1974, Studies on the autecology of the marine diatom Thalassiosira nordenskioeldii Cleve. 1. The influence of day-length, light intensity and temperature on growth, J. Phycol., 10, 220-225.

Egge, J. K., Thingstad, T. F., Larsen, A., Engel, A.; Wohlers, J., Bellerby, R.G.J., Riebesell, U., 2009, Primary production during nutrient-induced blooms at elevated $CO_{2}$ concentrations, Biogeosciences, 6, 877-885. crossref(new window)

Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Delille, B., Gattuso, J. P., Harlay, J., Heemann, C., Hoffmann, L., Jacquet, S., Nejstgaard, J., Pizay, M. D., Newall, E.R., Schneider, U., Terbrueggen, A., Riebesell, U., 2005, Testing the direct effect of $CO_{2}$ concentration on a bloom of the coccolithophorid Emiliania Huxleyi in mesocosm experiments, Limnol. Oceanogr., 50(2), 493-507. crossref(new window)

Feng, Y. Y., Hare, C. E., Leblanc, K., Rose, J. M., Zhang, Y. H., DiTullio, G. R., Lee, P. A., Wilhelm, S. W., Rowe, J. M., Sun, J., Nemcek, N., Gueguen, C., Passow, U., Benner, I., Brown, C., Hutchins, D. A., 2009, Effects of increased p$CO_{2}$ and temperature on the North Atlantic spring bloom, I. The phytoplankton community and biogeochemical response, Mar. Ecol. Prog. Ser., 388, 13-25. crossref(new window)

Fu, F. X., Zhang, Y., Warner, M. E., Feng, Y., Sun, J., Hutchins, D. A., 2008, A comparison of future increased $CO_{2}$ and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum, Harmful algae, 7, 76-90. crossref(new window)

Fu, F. X., Warner, M. E., Zhang, Y., Feng, Y., Hutchins, D. A., 2007, Effects of increased temperature and $CO_{2}$ on photosynthesis, growth and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria), J. Phycol., 43, 485-496. crossref(new window)

Gao, K., Helbling, E. W., Hader, D. P., Hutchins, D. A., 2012, Response of marine primary producers to interactions between ocean acidification, solar radiation, and warming, Mar. Ecol. Prog. Ser., 470, 167-189. crossref(new window)

Giordano, M., Beardall, J., Raven, J. A., 2005, $CO_{2}$ concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution, Annual Review of Plant Biol., 56, 99-131. crossref(new window)

Goldman, J. C., 1999, Inorganic carbon availability and the growth of large marine diatoms, Mar. Ecol. Prog. Ser., 180, 81-91. crossref(new window)

Guiry, M. D. Guiry, G.M., 2012, AlgaeBase. World- wide electronic publication, National University of Ireland, Galway. http://www.algaebase. org.

Hitchcock, G. L., 1980, Influence of temperature on the growth rate of Skeletonema costatum in response to variations in daily light intensity, Mar. Biol., 57, 261-269. crossref(new window)

Hu, H., Gao, K., 2008, Impact of $CO_{2}$ enrichment on growth and photosynthesis in freshwater and marine diatom, Chi. J. Oceanogr. Limnol., 26(4), 407-414. crossref(new window)

Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., and others (eds)., 2001, Climate change 2001: the scientific basis, Cambridge University Press, Cambridge.

Huertas, I. E., Monica, R., Lopez-Rodas, V., Costas, E., 2011, Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proceedings of the Royal Society B, 278, 3534-3543. crossref(new window)

IPCC Fourth Assessment Report 2007, Climate Change: The Physical Science Basis; Intergovernmental Panel on Climate Change; edited by: Solomon, S., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L., Cambridge University Press, New York.

Karentz, D., Smayda, T. J., 1984, Temperature and seasonal occurrence patterns of 30 dominant phytoplankton species in Narragansett Bay over a 22-year period (1959-1980), Mar. Ecol. Prog. Ser., 18, 277-293. crossref(new window)

Kim, J. M., Lee, K., Shin, K., Kang, J. H., Lee, H. W., Kim, M., Jang, P. G., Jang, M.C., 2006, The effect of seawater $CO_{2}$ concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment, Limnol. Oceanogr., 51, 1629- 1636. crossref(new window)

Kim, J. M., Lee, K., Yang, E. J., Shin, K., Noh, J. H., Park, K. T., Hyun, B., Jeong, H. J., Kim, J. H., Kim, K. Y., Kim, M., Kim, H. C., Jang, P.G., Jang, M. C., 2010, Enhanced production of oceanic dimethylsulfide resulting from $CO_{2}$-induced grazing activity in high $CO_{2}$ world. Environ, Sci. Technol., 44(21), 8140-8143. crossref(new window)

Matsuda, U., Hara, T., Colman, B., 2001, Regulation of the induction of bicarbonate uptake by dissolved $CO_{2}$ in the marine diatom Phaeodactylum tricornutum. Plant Cell Environ., 24, 611-620. crossref(new window)

Montagnes, D. J. S., Franklin, D.J., 2001, Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: Reconsidering some paradigms. Limnol. Oceanogr., 46(8), 2008-2018. crossref(new window)

Oh, S. J., Lee, J. S., Park, J. S., Noh, I. H., Yoon, Y. H., 2008, Environmental factors on the succession of phytoplankton community in Jinju Bay, Korea, J. Kor. Soc. Mar. Environ. Engin., 11(2), 98-104 [in Korean].

Park, J. S., Yoon, Y. H., Oh, S. J., 2009, Variational characteristics of phytoplankton community in the mouth parts of Gamak Bay, Southern Korea, Kor. J. Environ. Biol., 27(2), 205-215 [in Korean].

Popovich, C. A., Gayoso, A. M., 1999, Effects of irradiance and temperature on the growth rate of Thalassiosira curviseriata Takano (Bacillariophyceae), a bloom diatom in Bahia Blanca estuary (Argentina), J. Plank. Res., 21(6), 1101-1110. crossref(new window)

Riebesell, U., 2004. Effects of $CO_{2}$ enrichment on marine phytoplankton. J. Oceanogr.. 60, 719-729. crossref(new window)

Rost, B., Riebesell, U., Burkhardt, S., Sultemeyer, D., 2003, Carbon acquisition of bloom-forming marine phytoplankton. Limnol. Oceanogr., 48, 55-67. crossref(new window)

Sarno, D., Kooistra, W. H. C. F., Balzano, S., Hargraves, P.E., Zingone, A., 2007, Diversity in the genus Skeletonema (BACILLARIOPHYCEAE): III. Phylogenetic position and morphological variability of Skeletonema costatum and Skeletonema grevillei, with the description of Skeletonema ardens sp. NOV.1, J. Phycol., 43, 156-170. crossref(new window)

Schippers, P., Lurling, M., Scheffer, M., 2004, Increase of atmospheric $CO_{2}$ promotes phytoplankton productivity, Ecology Letters, 7, 446-451. crossref(new window)

Shikata, T., Nagasoe, S., Matsubara, T., Yoshikawa, S., Yamasaki, Y., Shimasaki, Y., Oshima, Y., Jenkinson, I.R., Honjo, T., 2008, Factors influencing the initiation of blooms of the raphidophyte Heterosigma akashiwo and the diatom Skeletonema costatum in a port in Japan, Limnol. Oceanogr., 53(6), 2503-2518. crossref(new window)

Tortell, P. D., Ditullio, G. R., Sigman, D. M., Morel, F. M. M., 2002, $CO_{2}$ effects on taxonomic composition and nurtrient utilization in an equatorial Pacific phytoplankton assemblage, Mar. Ecol. Prog. Ser., 236, 37-43. crossref(new window)

Tortell, P. D., Payne, C. D., Li, Y., Trimborn, S., Rost, B., Smith, W. O., Riesselman, C., Dunbar, R. B., Sedwick, P., Ditullio, G.R., 2008, $CO_{2}$ sensitivity of Southern Ocean phytoplankton, Geophysical Research Letters, 35, L04605, doi:10.1029/2007GL032583. crossref(new window)

Wu, Y., Gao, K., Riebesell, U., 2010, $CO_{2}$-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum, Biogeosciences, 7, 2915-2923. crossref(new window)

Yoder, J. A., 1979, Effect of temperature on light-limited growth and chemical composition of Skeletonema costaturm (Bacillariophyceae). J. Phycol., 15, 362-370. crossref(new window)