JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Cathode in Electrochemical Reaction for Treating Ballast Water
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Cathode in Electrochemical Reaction for Treating Ballast Water
Kim, Dong Seog; Park, Hye Jin; Yoon, Jong Mun; Park, Yong Seok; Park, Young Seek;
  PDF(new window)
 Abstract
In this study, we examined the effect of cathode from electrolysis reactor for treating ballast water. We are going to select a suitable cathode for seawater electrolysis after considering the effect on the generation of the oxidant of cathode and the electrode deposition materials adhering to the surface of cathode. Anode is Ru-Ti-Pd electrode and cathode are Ti, Pt, JP520 (Ni-Pt-Ce) electrodes. Using the cathode of the three types, experiments were conducted to examine the effects of TRO (total residual oxidants) generation concentration and RNO (N, N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical) degradation concentration (in 1, 35 psu), ohmic drop, FESEM(field emission scanning electron microscope) observation of cathode surface and EDX (energy dispersive X-ray spectroscopy) measurements of attached fouling material. The results showed that TRO generation concentration and RNO degradation concentration in according to each type of cathode are not different. The attached fouling materials were observed on the surface of Ti and the JP520 electrode by the observation of SEM after electrolysis for two hours, but it was not observed on the surface of Pt electrode. When considering the surface ohmic drop of cathode and the attached fouling materials, Pt electrode was judged as the excellent cathode.
 Keywords
Electrochemical reaction;Cathode;Electric ohmic drop;Electrode attachment material;Oxidants;
 Language
Korean
 Cited by
 References
1.
Chen, G., 2004, Electrochemical technologies in wastewater treatment, Sep. Puri. Tech., 38, 11-41. crossref(new window)

2.
Drogui, P., Elmaleh, S., Rumeau, M., Bemard, C., Rambaud, A., 2001, Oxidizing and disinfecting by hydrogen peroxide produced in a two-electrode cell, Wat., Res., 35(13), 3235-3241. crossref(new window)

3.
Han, K. H., 2009, Development present condition of ballast water processing unit processing, Oceanic Korea, 3, 88-94.

4.
Jin, H. S., Lee, J, H., 2010, Removal of Lead from seawater using electrolysis and coprecipitation method., Kor. Soc. Environ. Eng., 32(2), 149-154.

5.
Jung, Y. M., Yoon, Y. J., Kang, J. Won, 2012, Performance of disinfection oxidants in electrolysis for ballast water treatment, Kor. Soc. Wat. Qual. Kor. Soc. Wat. Wastewat., 2010 Joint Conf. Proceeding, 416-417.

6.
Kim, H. K., Jeong, J. Y., Shin, J. W., Park, J. Y., 2012, Removal of COD and T-N caused by ETA from nuclear power plant wastewater using 3D packed bed bipolar electrode system, J. Kor. Soc. Wat. Wasewat., 26(3), 409-421. crossref(new window)

7.
Kim, D. S., Park, Y. S., 2009, A study on the preparation of the dimensionally stable anode(DSA) with high generation rate of oxidants( I ), J. Environ. Sci., 18(1), 49-60.

8.
Kim, J. S., 2006, Electrochemical oxidation of representative inorganic and organic contaminants in an in situ electrochemical reactor, Doctoral dissertation, University of Washington, Washington, USA.

9.
Kim, K. W., Lee, E. H., Kim, J. S., Shin, K. H., Jung, B. I., Kim, K. H., 2002, Performance improvement of Ir oxide electrode for organic destruction, HWAHAK KONGHAK, 40(2), 146-151.

10.
Liu, Y., Liu, H., Ma, J., Li, J., 2011, Investigation on electrochemical properties of cerium lead dioxide anode and application for elimination of nitrophenol, ELECTROCMICA Acta, 56, 1352-1360. crossref(new window)

11.
MK newa,, Ballast water, 2013, http://news.mk.co.kr/newsRead.php?year= 2013&no=687174

12.
Naver encyclopedia of knowledge, 2013, http://terms.naver. com/entry.nhn?cid =571&docId=916551&mobile&categoryId=3298

13.
Panizza, M., Barbucci, A., Ricotti, R., Cerisola, 2007, Electrochemical degradation of methylene blue, Sep. Puri. Tech., 54, 2007, 382-387, 2007. crossref(new window)

14.
Park, S. H., Kim, I. S., 2004, Disinfection of harmful organism for ballast water using electrolytic treatment system, Kor. Ins. Navi. Port Res., 2004 Annual Conf. Proceeding, 227-232.

15.
Park, Y. S., Kim, D. S., 2009, A study on the preparation of the dimensionally stable anode(DSA) with high generation rate of oxidants(II), J. Environ. Sci., 18(1), 61-72.

16.
Permelec Electrode LTD., 2013, http://www.permelec.co.jp/

17.
Seo, W. H., Jeon, S. A., Kim, J. H., Lee, T. H., Sang, B. I., 2006, Electrochemical disinfection for ballast water treatment, J. Kor. Soc. Environ. Eng., 28(11), 1162-1167.

18.
Song, H. Y., Lee, S., H., Han, J. M., 2006, SACP system design for moored merchant ships using temporary anodes, Cor. Prot., 5(2), 9-63.

19.
Yeom, H. T., Yoo, H. R., Park, Y., S., H, H, I, 2013a, Surface preparation practical affairs, Revision, DongMyoung, Seoul, 20-35.

20.
Yeom, H. T., Yoo, H. R., Park, Y., S., H, H, I, 2013b, Surface preparation practical affairs, Revision, DongMyoung, Seoul, 450-457.

21.
Yoo, Y. E., Kim, D. S., 2011, Comparison of dye removal performance and oxidants formation of insoluble electrode, J. Environ. Sci., 20(10), 1273-1284.

22.
Yoon, B. S., Rho, J. H., Kim, K. I., Park, S. K., Kim, H. R., 2005, Development of ballast water treatment technology(feasibility study of NaOCl produced by electrolysis, J. Kor. Soc. Mar. Envrion. Eng., 8(4), 174-178.