JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Estimation of Atmospheric Turbulent Fluxes by the Bulk Transfer Method over Various Surface
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Estimation of Atmospheric Turbulent Fluxes by the Bulk Transfer Method over Various Surface
Kim, Min-Seong; Kwon, Byung-Hyuk; Kang, Dong-Hwan;
  PDF(new window)
 Abstract
The momentum flux and the sensible heat flux were measured with the scintillometers and ultrasonic anemometers at 6 sites of which surface characteristics like roughness length and zero-displacement are different each other. We estimated the momentum flux and the sensible heat flux based on the bulk transfer method with the drag coefficient and the heat transfer coefficient calculated from the temperature and wind speed at two heights. The variation of bulk transfer coefficients showed a remarkable difference depending on the atmospheric stability which is less influenced by the zero-displacement than the roughness length. The estimated sensible heat fluxes were in good agreement with those measured at 3 m, showing 23.7 of the root mean square error that is less than 10% of its maximum. Since the estimated momentum flux is not only effected by drag coefficient but also by wind speed square, the determination of wind speed in the bulk transfer method is critical.
 Keywords
Drag coefficient;Heat transfer coefficient;Bulk transfer method;Turbulent fluxes;Scintillometers;
 Language
Korean
 Cited by
 References
1.
Anandakumar, K., 1999, Sensible heat flux over a wheat canopy: optical scintillometer measurements and surface renewal analysis estimations, Agric. For. Meteorol., 96, 145-156. crossref(new window)

2.
Andre, J. C., DeMoor, P. L., Therry, G., 1978, Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer, J. Atmos. Sci., 35, 1861-1883. crossref(new window)

3.
Arya, S. P., 1998, Introduction to Micrometeorology, 2nd ed., Academic Press, San Diego, pp. 433.

4.
Beljaars, A. C. M., Schotanus, P., Nieuwstadt, F. T. M., 1983, Surface layer similarity under nonuniform fetch conditions, J. Clim. Appl. Meteorol., 22, 1800-1810. crossref(new window)

5.
Burns, S. P., Horst, T. W., Jacobsen, L., Blanken, P. D., Monson, R. K., 2012, Using sonic anemometer temperature to measure sensible heat flux in strong winds, Atmos. Meas. Tech., 5, 2095-2011. crossref(new window)

6.
Carson, D. J., 1973, The development of a dry inversion-capped convectively unstable boundary layer, Quart. J. Roy. Meteorol. Soc., 99, 450-467. crossref(new window)

7.
Caughey, S. J., Wyngaard, J. C., Kaimal, J. C., Turbulence in the evolving stable boundary layer, J. Atmos. Sci., 36, 1041-1052.

8.
De Bruin, H. A. R., Van den hurk, B. J. J. M., Kohsiek, W., 1995, The scintillation method tested over a dry vine yard area, Boundary layer Meteorology, 76, 25-40. crossref(new window)

9.
De Bruin, H. A. R., 2002, Introduction: Renaissance of Scintillometry, Boundary layer Meteorology, 105, 1-4. crossref(new window)

10.
Dong, Z., Gao, S., Donald, W. F., 2001, Drag coefficients, roughness length and zero-plane displacement height as distributed by artificial standing vegetation, Journal of Arid Environments, 49(3), 485-505. crossref(new window)

11.
Gao, Z., Wang, J., Ma, Y., Kim, J., Choi, T. J., Lee, H. C., Asanuma, J., Hu, Z., 2000, Study of roughness lengths and drag coefficients over Nansha area region, Gobi, desert, Oasis and Tibetan plateau, Phys. Chem. Earth (B), 25(2), 141-145.

12.
Garratt, J. R., 1977, Review of drag coefficients over oceans and continents, Monthly Weather Review, 105, 915-929. crossref(new window)

13.
Greenhut, G. K., 1982, Stability dependence of fluxes and bulk transfer coefficients in a tropical boundary layer, Boundary layer Meteorology, 24, 253-264. crossref(new window)

14.
Jia, L., Su, Z., Van den Hurk, B., Menenti, M., Moene, A., De Bruin, H. A. R., Risarry, J. J. B., Ibanez, M., Cuesta, A., 2003, Estimation of sensible heat flux using the surface energy balance system and ASTR measurement, Physics and Chemistry of the earth, 28, 75-88. crossref(new window)

15.
Kanda, M., Moriwaki, R., Roth, M., and Oke, T., 2002, Area-Averaged Sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry, Boundary layer meteorology, 105, 177-193. crossref(new window)

16.
Kondo, J., 1975, Air-sea bulk transfer coefficients in diabatic conditions, Boundary layer meteorology, 9, 91-112.

17.
Kondo, J., and Kawanaka, A., 1986, Numerical study on the bulk heat transfer coefficient for a variety of vegetation types and densitys, Boundary layer meteorology, 37, 285-296. crossref(new window)

18.
Kwon, B. H., Benech, B., Lambert, D., Durand, P., Druilhet, A., Giordani, H., Planton, S., 1998, Structure of the marine atmospheric boundary layer over an oceanic thermal front. SEMAPHORE experiment, J. Geophys. Res., 103, Issue C11, p.25159-25180. crossref(new window)

19.
Launiainen, J., and Vihma, T., 1990, Derivation of turbulent surface fluxes - An iterative flux-profile method allowing arbitrary observing heights, Environmental Software, 5(3), 113-124. crossref(new window)

20.
Li, G., Duan, T., Gong, Y., 2000, Bulk transfer coefficient and surface flux on the west of Tibetan plateau, Chinese Science Bulletin, 45, 1221. crossref(new window)

21.
Mason, P. J., and Thompson, D. J., 1987, Large eddy simulations of the neutral-static-stability planetary boundary layer, Quart. J. Roy. Meteor. Soc., 25, 271-287.

22.
Nieveen, J. P., and Green, A. E., 1999, Measuring sensible heat flux density over pasture using the CT2-profile method, Boundary layer meteorology, 91, 23-25. crossref(new window)

23.
Park, S. J., Choi, T. J., Kim, S. J., 2013, Heat flux variations over sea ice observed at the coastal area of the sejong station, Antarctica, Asia-pacific J. Atmos. Sci., 49(4), 443-450. crossref(new window)

24.
Patil, M. N., 2006, Aerodynamic drag coefficient and roughness length for three seasons over a tropical western indian station, Atmospheric Research, 80, 280-293. crossref(new window)

25.
Royal Aeronautical Society, 1972, Characteristics of wind speed in the lower layers of the atmosphere near the ground: Strong winds (neutral atmosphere). Engineering Science Data Unit. No. 72026, London.

26.
Stanhill, G., 1969, A simple instrument for field measurement of turbulent diffusion flux, Journal of Applied Meteorology, 8(4), 509-513.

27.
Stull, R. B., 1988, An introduction to boundary layer meteorology, Kluwer Academic Publishers, Dordrecht, pp. 666.

28.
Tennekes, H., 1973, A model for the dynamics of the inversion above a convective boundary layer, J. Atmospheric Science, 30, 558-567. crossref(new window)

29.
Verkaik, J. W., 2000, Evaluation of two gustiness models for exposure correction calculations, J. Appl. Meteorol., 39, 1613-1626. crossref(new window)

30.
Verkaik, J. W., and Holtslag, A. A. M., 2007, Wind profiles, momentum fluxes and roughness lengths at Cabauw revisited, Boundary layer Meteor., 122, 701-719. crossref(new window)

31.
Vickers, D., and Mahrt, L., 1997, Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Ocean. Tech., 14, 512-526. crossref(new window)

32.
Weiss, A. I., Hennes, M. and Rotach, M. W., 2001, Derivation of refractive index and temperature gradients from optical scintillometry to correct atmospherically induced errors for highly precise geodetic measurements, Surveys in Geophysics, 22, 589-596. crossref(new window)

33.
Wieringa, J., 1976, An objective exposure correction method for average wind speeds measured at a sheltered location, Quart. J. Roy. Meteor. Soc., 102, 241-253. crossref(new window)

34.
Zhang, H. S., and Park, S. U., 1998, Bulk transfer coefficients over different surfaces, J. of Korean Meteor. Soc., 34(4), 664-669.

35.
Zhao, P., Chen, L., 2000, The climate characteristics of surface turbulent exchange and surface heat source over the Qinghai-Tibet plateau, Acta Meteorological Sinica., 14, 13-29.