Advanced SearchSearch Tips
Fish Passage Assessments in the Fishway of Juksan Weir Constructed in the Downstream Area of Youngsan-River Watershed
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fish Passage Assessments in the Fishway of Juksan Weir Constructed in the Downstream Area of Youngsan-River Watershed
Park, Chan-Seo; An, Kwang-Guk;
  PDF(new window)
Fish passage asssessments were conducted in the fishway at Juksan Weir, which was constructed as a four-major rivers project in the downstream area of Youngsan-River Watershed. For the research, fish-movements/migrations were analyzed for seven times from April ~ October, 2013 using an approach of fish trap-setting. Fish fauna and compositions were analyzed in the fishway, and seasonal- and diel-movement patterns were analyzed in relation to current velocity in the fishway. Also, abundances of exotic fishes such as bluegill sunfish (Lepomis macrochirus), large-mouth bass (Micropterus salmoides), and white curcian carp (Carassius cuvieri) were monitored in the fishway. Current velocity(n = 18) in the fishway showed large variations () depending on the location of the fish trap-setting and this physical factor influenced the fish movements. Fish movements, based on the CPUE of individuals, in the fishway was greater in slower velocity (mean: 0.36 m/s, range: 0.10~1.54 m/s) than faster velocity (mean: 1.51 m/s, range: 0.90~1.90 m/s). Seasonal analysis of fish movements showed that most frequent uses (8 speices and 591 individuals, 66.2% of the total) of the fishway occurred in spring period(i.e., June). Diel movement analysis, in the mean time, showed highest in the time period of 00:00 ~ 3:00 am (7 species and 281 individuals, 20.9% of the total). The efficient managements in the fishway at Juksan Weir are required in relation to the hydrological regime.
Distribution;Fish community;Juksan Weir;Weir construction;
 Cited by
Trap을 이용한 공주보 아이스하버식 어도의 효과분석,이진웅;윤주덕;김정희;박상현;백승호;윤조희;장민호;

환경생물, 2015. vol.33. 1, pp.75-82 crossref(new window)
An, K. G., Kim, K. I., Kim, J. H., 2007, Biological water quality assessments in wastewater-impacted and non-impacted Streams, Korean J. Limnol., 40(1), 82-92.

Baxter, R. M., 1977, Environmental effects of dams and impounments, Annual Review of Ecology and Systematics, 8, 255-283. crossref(new window)

Choi, J. Y., Lee, G. J., 2004, Fish Ways at Rivers and Dams: Current Status, and Future Installation and Management, Korea Environment Institute., 65-94.

Choi, J. W., An, K. G., 2008, Characteristics of fish compositions and longitudinal distribution in Yeongsan river watershed, Korean J. Limnol., 41(3), 301-310.

Choi, J. W., Park, C. S., Lim, B. J., Park, J. H., An, K. G., 2013, Fish passage Evaluations in the fishway constructed on Seungchon weir, Korean J. Environ. Sci. Int., 22(2), 215-223. crossref(new window)

Fausch, K. D., Young, M. K., 1995, Evolutionary significant units and movement of resident stream fishes: a cautionary tale, Evolution and the aquatic ecosystem: defining unique units in population conservation, Ed. J. L. Nielson, American Fisheries Society, Symposium, 17, Bethesda, Maryland.

Gleick, P. H. 2001, Making every drop count. Scientific American 284(2), 40-46.

Harris, J. H., 1984, Impoundment of coastal drainages of south-eastern Australia, and a review of its relevance to fish migrations, Aust. Zool, 21, 235-250.

Han, J. H., Ko, D. G., Lim, B. J., Park, J. H., An, K. G., 2012, Summer patterns and diel variations of fish movements using fish trap sampling technique in the Juksan weir, Korean J. Environ. Impact Assessment, 21(6), 879-891.

Hong, J. S., Seo, I. S., Yoon, K. T., Hwang, I. S., Kim, C. S., 2004, Notes on the benthic macrofauna during september 1997 Namdaecheon estuary, Gangneung, Korea, Korean J. Environ. Biol., 22(2), 341-350.

Kim, I. S., Kang, E. J., 1993, Colored fishes of Korea, Academy Publishing Co., Ltd., Seoul, Korea.

Kinsolving, A. D., Bain, M. B., 1993, Fish assemblage recoveryalong a riverine disturbance gradient. Ecological Application, 3, 531-544. crossref(new window)

Kim, I. S., Park, J. Y., 2002, Freshwater fish of Korea, Kyo-Hak Publishing Co., Ltd., Seoul, Korea.

KIWE(Korea Institute of Water and Environment), 2008, Monitoring of efficiency on the fish conservation facilities in Jangheung Dam watershed, Korea Water Resource Corporation.

Ko, D. G., Choi, j. W., Lim, B. J., Park, J. H., An, K. G., 2012, Fish Distribution, Compositions and Community Structure Characteristics during Juksan Weir Construction in Yeongsan River Watershed, Korean J. Environ. Eco., 26(6), 892-901.

Lee, J. H., Han, J. H., Lim, B. J., Park, J. H., Shin, J. K., An, K. G., 2013, Comparative analysis of fish fauna and community structures before and after the artificial weir construction in the mainstreams and tributaries of Yeongsan river watershed, Korean J. Limnol., 103-115. crossref(new window)

Mallen-Cooper, M., Stuart, I. G., Hides-Pearson, F., Harris, J. H. 1995, Fish migration in the Murray River and assessment of the Torrumbarry fishway. Final Report, NRMS Project N002.

Nilsson, J., Gerritsen, M., Younis, R., 2005, A Novel AdaptiveAnisotropic Grid Framework for Efficient Reservoir Simulation. Paper SPE93243 presented at the SPE Reservoir Simulation Symposium, The Woodlands,Texas, 31 January-2 February.

MOE/NIER (Ministry of Environment/National Institute of Environmental Research), 2011, Passage route survey of migratory fishes before and after the construction of weirs and the fishway''s effects. Yeongsan river environment research center, National institute of environmental research, 175pp.

Park, H. J., An, K. G., 2007, Trophic State Index (TSI) and Empirical medels, based on water quality parameters, in Korean reservoirs, Korean J. Limnol., 40(1), 14-30.

Park, S. B., Lee, J. Y., Jang, M. H., Kim, H. W., Jeong, J. M., Kim, J. W., Joo, G. J., 1999, Water quality and phytoplankton community dynamics in a weir reach of the Yangsan Stream (1993-1996). Korean J. Limnol., 32(4), 331-340.

Park, L. H., Cho, Y. K., Cho, C., Sun, Y. J., Park, K. Y., 2001, Hydrography and circulation in the Yeongsan River Estuary in Summer, 2000, The Sea, Korean J. Society of Oceanography, 6(4), 218-224.

Poff, N. L., Hart, D. D., 2002, How dams vary and why it matters for the emerging science of dam removal, BioScience, 52, 659-668. crossref(new window)

Sheer, M. B. Steel, E. A., 2006, Lost watersheds: barriers, aquatic habitat connectivity, and salmon persistence in the Willamette and lower Columbia River basins, Transactions of the American Fisheries Society 135, 1654-1669. crossref(new window)

Yang, H. J., Kim, K. H., Kum, J. D., 2001, The fish fauna and migration of the fishes in the fish way of the Nakdong river mouth dam, Korean J. Limnol., 34(3), 251-258.

Yun, S. T., Go, Y. G., Oh, G. H., Mun, B. C., Kim, H. G., 2003, Water quality assesment of the lower Yeongsan River System, Environmental Impact Assessment, 12(4), 259-270.