JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Assessment of Heavy Metal Effects on the Freshwater Microalga, Chlorella vulgaris, by Chlorophyll Fluorescence Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Assessment of Heavy Metal Effects on the Freshwater Microalga, Chlorella vulgaris, by Chlorophyll Fluorescence Analysis
Oh, Soon-Ja; Koh, Seok-Chan;
  PDF(new window)
 Abstract
The response of the freshwater microalga, Chlorella vulgaris, to heavy metal stress was examined based on chlorophyll fluorescence analysis to assess the toxic effects of heavy metals in freshwater ecosystems. When toxic effects were analyzed using regular chlorophyll fluorescence analysis, photosystem II activity() decreased significantly when exposed to and for 12 h, and decreased in the order of >>> when exposed for 24h. The effective photochemical quantum yield(), chlorophyll fluorescence decrease ratio(), minimal fluorescence yield(), and non-photochemical quenching(NPQ), but not photochemical quenching(qP), responded sensitively to , , and . These results suggest that , as well as , , , and NPQ could be used to assess the effects of heavy metal ions in freshwater ecosystems. However, because many types of heavy metal ions and toxic compounds co-occur under natural conditions, it is difficult to assess heavy metal toxicity in freshwater ecosystems. When Chlorella was exposed to heavy metal ions for 12 or 24h, and maximal fluorescence yield() changed in response to and based on image analysis. However, assessing quantitatively the toxic effects of several heavy metal ions is challenging.
 Keywords
Chlorella vulgaris;Heavy metal ions;Image analysis;Photosystem II activity();
 Language
Korean
 Cited by
 References
1.
Aidid, S. B., Okamoto, H., 1992, Effects of lead, cadmium and zinc on the electric membrane potential at the xylem/symplast interface and cell elongation of Impatiens balsamina, Environ. Exp. Bot., 32, 439-448. crossref(new window)

2.
An, Y. J., Nam, S. H., Lee, J. K., 2007, Domestic test species for aquatic toxicity assessment in Korea, Korean J. Limnol., 40, 1-13 (in Korean).

3.
Aruoja, V., Dubourguier, H. C., Kasemets, K., Kahru, A., 2009, Toxicity of nanoparticles of CuO, ZnO and $TiO_2$ to microalgae Pseudokirchneriella subcapitata, Sci. Total Environ., 407, 1461-1468. crossref(new window)

4.
Balaknina, T., Kosobryukhov, A., Ivanov, A., Kres-lauskii, V., 2005, The effect of cadmium on $CO_2$ exchange, variable fluorescence of chlorophyll and the level of antioxidant enzymes in pea leaves, Russian J. Plant Physiol., 52, 15-20. crossref(new window)

5.
Bilger, W., Bjorkman, O., 1990, Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis, Photosynth. Res., 25, 173-185. crossref(new window)

6.
Blinova, I., 2004, Use of freshwater algae and duckweeds for phytotoxicity testing, Environ. toxicol., 19, 425-428. crossref(new window)

7.
Bolhar-Nordenkampf, H. R., oquist, G., 1993, Chlorophyll fluorescence as a tool in photosynthesis research. In Photosynthesis and Production in a Changing Environment, in: Hall, D. O., Scurlock, J. M. O., Bolhar-Nordenkampf, H. R., Leegood, R. C., Long, S. P., (eds.), A Field and Laboratory Manual, Chapman and Hall, London, 193-206.

8.
Chaoui, A., Mazhoudi, S., Ghorbal, M. H., Elferjani, E., 1997, Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.), Plant Sci., 127, 139-147. crossref(new window)

9.
Clijsters, H., Van Assche, F., 1985, Inhibition of photosynthesis by heavy metals, Photosynth. Res., 7, 31-40. crossref(new window)

10.
Genty, B., Briantais, J. M., Baker, N. R., 1989, The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Acta Biochim. Biophys., 99, 87-92.

11.
Gilmore, A. M., 1997, Mechanistic aspects of xanthophyll cycle dependent photoprotection in higher plant chloroplasts and leaves, Physiol. Plant., 99, 197-209. crossref(new window)

12.
Horton, P., Ruban, A. V., Young, A. J., 1999, Regulation of the structure and function of the light harvesting complexes of photosytem II by the xanthophyll cycle. In the photochemistry of carotenoids, in: Frank, H. A., Young, A. J., Cogdell, R. J., (eds.), Kluwer, Dordrecht, 271-291.

13.
Huang, L., Xu, J., Li, T., Wang, L., Deng, T., Yu, X., 2014, Effects of additional $Mg^{2+}$ on the growth, lipid production, and fatty acid composition of Monoraphidium sp. FXY-10 under different culture conditions, Ann. Microbiol., 64, 1247-1256. crossref(new window)

14.
Hwang, U. K., Ryu, H. M., Lee, J. W., Lee, S. M., Kang, H. S., 2014, Toxic effects of heavy metal (Cd, Cu, Zn) on population growth rate of the marine diatom (Skeletonema costatum), Korean J. Environ. Biol., 32, 243-249 (in Korean). crossref(new window)

15.
Jarvis, S. C., Jones, L. H. P., Hopper, M. J., 1976, Cadmium uptake from solution by plants and its transport from roots to shoots, Plant Soil., 44, 179-191. crossref(new window)

16.
Kupper, H., Kupper, F., Spiller, M., 1996, Environmental relevance of heavy metal substituted chlorophylls using the example of water plants, J. Exp. Bot., 47, 259-266. crossref(new window)

17.
Lichtenthaler, H. K., Langsdorf, G., Lenk, S., Buschmann, C., 2005, Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluore-scence imaging system, Photosynthetica, 43, 355-369. crossref(new window)

18.
Lu, C. M., Chau, C. W., Zhang, J. H., 2000, Acute toxicity of excess mercury on the photosynthetic performance of cyanobacterium, S. platensis - assessment by chlorophyll fluorescence analysis, Chemosphere, 41, 191-196. crossref(new window)

19.
Maksymiec, W., Wojcik, M., Krupa, Z., 2007, Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate, Chemosphere, 66, 421-427. crossref(new window)

20.
Mallick, N., Mohn, F. H., 2003, Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus, Ecotoxicol. Environ. Saf., 55, 64-69. crossref(new window)

21.
Nedbal, L., Soukupova, J., Whitmarsh, J., Trtilek, M., 2000, Posthavest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality, Photosynthetica, 38, 571-579. crossref(new window)

22.
Oh, S., Koh, S. C., 2013, Chlorophyll a fluorescence response to mercury stress in the freshwater microalga Chlorella vulgaris, J. Environ. Sci., 22, 705-715 (in Korean).

23.
Organisation for Economic Cooperation and Development, 1984, Algal growth inhibition test. OECD guidelines for testing of chemicals 201, Paris, France.

24.
Plekhanov, S. E., Chemeris, Y. K., 2003, Early toxic effects of zinc, cobalt and cadmium on photosynthetic activity of the green alga Chlorella pyrenoidosa Chick S-39, Biol. Bul., 30, 506-511. crossref(new window)

25.
Ricart, M., Guasch, H., Barcelo, D., Brix, R., Conceicao, M. H., Geiszinger, A., Lopez de Alda, M. J., Lopez-Doval, J. C., Munoz, I., Postigo, C., Romani, A. M., Villagrasa, M., Sabater, S., 2010, Primary and complex stressors in polluted Mediterranean rivers: pesticide effects on biological communities, J. Hydrol., 383, 52-61. crossref(new window)

26.
Rysgaard, S., Kuhl, M., Glud, R. N., Hansen, J. W., 2001, Biomass, production and horizontal patchiness of sea ice algae in a high-Arctic fjord (Young Sound, NE Greenland), Mar. Ecol. Prog. Ser., 223, 15-26. crossref(new window)

27.
Schreiber, U., Schliwa, U., Bilger, W., 1986, Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer, Photosynth. Res., 10, 51-62. crossref(new window)

28.
Serodio, J., Silva, J. M., Catarino, F., 1997, Nondestructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chlorophyll a fluorescence, J. Phycol., 33, 542-553. crossref(new window)

29.
Shrotri, C., Rathore, V., Mohanty, P., 1981, Studies on photosynthetic electron transport, photophosphorylation and $CO_2$ fixation in $Zn^{2+}$ deficient leaf cells of Zea mays, J. Plant Nutri., 3, 945-954. crossref(new window)

30.
Strasser, B. J., Strasser, R. J., 1995, Measuring fast fluorescence transients to address environmental questions: The JIP test, in: Mathis, P. (ed.), Photosynthesis: From Light to Biosphere, Kluwer Academic, Dordrecht, 977-980.

31.
Thompson, A. S., Rhodes, J. C., Pettman, I., 1988, Culture collection of algae and protozoa catalogue of strains, Published by CCAP, Cumbria, UK, 164.

32.
Travieso, L., Canizares, R. O., Borja, R., Benitez, F., Dominguez, A. R., Dupeyron, R., Valiente, V., 1999, Heavy metal removal by microalgae, Bull. Environ. Contam. Toxicol., 62, 144-151. crossref(new window)

33.
Ulloa, G., Otero, A., Sanchez, M., Sineiro, J., Nunez, M. J., Fabregas, J., 2012, Effect of Mg, Si, and Sr on growth and antioxidant activity of the marine microalga Tetraselmis suecica, J. Appl. Phycol., 24, 1229-1236. crossref(new window)

34.
US Environmental Protection Agency, 1996, Algal toxicity tiers I and II. Series 850 Ecological effects test guidelines, Washington DC.

35.
Wan, G., Najeeb, U., Jilani, G., Naeem, M. S., Zhou, W., 2011, Calcium invigorates the cadmium-stressed Brassica napus L. plant by strengthening their photosynthetic system, Environ. Sci. Pollut. Res., 18, 1478-1486. crossref(new window)