Advanced SearchSearch Tips
Recombinant Human L-ferritin from Saccharomyces cerevisiae: Molecular Characterization and Synthesis of Iron Oxide Nanoparticles
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 26, Issue 2,  2011, pp.119-125
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2011.26.2.119
 Title & Authors
Recombinant Human L-ferritin from Saccharomyces cerevisiae: Molecular Characterization and Synthesis of Iron Oxide Nanoparticles
Kim, Kyung-Suk;
  PDF(new window)
In the synthesis of nanoparticles, much attention has been paid to regulating the particle size. There has been a possible evident that using the central cavity (core) of the protein ferritin has a greatly significant influence on it because the core can generate the nanometer-sized mineral particles of variable metal ions. In this report, recombinant human L-ferritins produced from Saccharomyces cerevisiae were purified and their molecular properties were characterized. The cDNA for human ferritin L chain was also expressed in another host such as Escherichia coli, and the properties of recombinant L-ferritins were compared. From isoelectric focusing experiment, the L-ferritin from the recombinant yeast showed no indication of N-glycosylation. Some post-translational modifications other than N-glycosylation were speculated in the L-ferritins from yeast. A difference was made in the L-ferritins in their iron uptake rates and the initial rate of the L-ferritin from yeast was slightly increased. The reconstitution yield and size distribution of the core minerals were analyzed in the L-ferritins by transmission electron microscopy. The L-ferritin from yeast with higher reconstitution yield (54.5%) showed slightly larger sizes (mean 6.92 nm) with narrower size distribution than the L-ferritin from E. coli. It is, in conclusion, speculated that L-ferritin from yeast is relatively superior to the other, in view of the size of nanoparticle and its relative homogeneity.
L-ferritin;iron kinetics;core reconstitution;yeast;E. coli;
 Cited by
Meldrum, F. C., V. J. Wade, D. L. Nimmo, B. R. Heywood, and S. Mann (1991) Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349: 684-687. crossref(new window)

Douglas, T. (1996) Biomimetic synthesis of nanoscale particles in organized protein cages. pp. 91-115. In: S. Mann (ed.). Biomimetic Materials Chemistry. VCH Publishers, Inc., NY, USA.

Colfen H. (2007) Bio-inspired mineralization using hydrophilic polymers. Top. Curr. Chem. 271: 1-77. crossref(new window)

Meldrum, F. C., T. Douglas, S. Levi, P. Arosio, and S. Mann (1995) Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. J. Inorg. Biochem. 58: 59-68. crossref(new window)

Mann, S. and F. C. Meldrum (1991) Controlled synthesis of inorganic materials using supramolecular assemblies. Adv. Mater. 3: 316-318. crossref(new window)

Harrison, P. M. and P. Arosio (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta. 1275: 161-203. crossref(new window)

Chasteen, N. D. and P. M. Harrison (1999) Mineralization in ferritin: An efficient means of iron storage. J. Struct. Biol. 126: 182-194. crossref(new window)

Joshi, J. G., S. R. Sezekan, and J. T. Fleming (1989) Ferritin-a general metal defoxicant. Biol. Trace Element Res. 21: 105-110. crossref(new window)

Fleming, J. T. and J. G. Joshi (1991) Ferritin: the role of aluminum in ferritin function. Neurobiol. Aging. 12: 413-418. crossref(new window)

Pead, S., E. Durrant, B. Webb, C. Larsen, D. Heaton, J. Johnson, and G. D. Watt (1995) Metal ion binding to apo, halo, and reconstituted horse spleen ferritin. J. Inorg. Biochem. 59: 15-27. crossref(new window)

Arosio, P. and S. Levi (2002) Ferritin: Iron homeostasis and oxidative damage. Free Rad. Biol. Med. 33: 457-463. crossref(new window)

Cozzi, A., B. Corsi, S. Levi, P. Santambrogio, A. Albertini, and P. Arosio (2000) Overexpression of wild type and mutated human ferritin H-chain in HeLa cells: In vivo role of ferritin ferroxidase activity. J. Biol. Chem. 18: 25122-25129.

Seo, H.-Y., Y.-Y. Chung, S.-J. Kim, C.-U. Park, and K.-S. Kim (2003) Enhanced expression and functional characterization of the human ferritin H- and L-chain genes in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 63: 57-63. crossref(new window)

Lee, J., H.-Y. Seo, E.-S. Jeon, O. S. Park, K.-M. Lee, C.-U. Park, and K.-S. Kim (2001) Cooperative activity of subunits of human ferritin heteropolymers in Escherichia coli. J. Biochem. Mol. Biol. 34: 365-370.

Santambrogio, P., S. Levi, A. Cozzi, E. Rovida, A. Albertini, and P. Arosio (1993) Production and characterization of recombinant heteropolymers of human ferritin H and L chains. J. Biol. Chem. 268: 12744-12748.

Burnette W. N. (1981) Western blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112: 195-203. crossref(new window)

Kim, K.-S., H.-R. Mun, and J.-H. Lee (2000) Iron cores of tadpole ferritin: native, reconstituted and recombinant H-chain ferritins. Inorg. Chim. Acta. 298: 107-111.

Hess, H. H., M. B. Less, and J. E. Derr (1978) A linear Lowry-Folin assay for both water-soluble and sodium dodecyl sulfatesolubilized proteins. Anal. Biochem. 85: 295-300. crossref(new window)

Chang, S.-R., Y.-T. Kim, and K.-S. Kim (1995) Purification and characterization of recombinant tadpole H-chain ferritin in Escherichia coli. J. Biochem. Mol. Biol. 28: 238-242.

Cragg, S. J., M. Wagstaff, and M. Worwood (1981) Detection of a glycosylated subunit in human serum ferritin. J. Biochem. 199: 565-571. crossref(new window)

Lee, J.-L., H.-S. Song, H.-J. Kim, J. H. Park, D. K. Chung, C.-S. Park, D. Jeoung, and H.-Y. Kim (2003) Functional expression and production of human H-ferritin in Pichia pastoris. Biotechnol. Letters 25: 1019-1023. crossref(new window)

Lee, J.-L., S.-N. Yang, C.-S. Park, D. Jeoung, and H.-Y. Kim (2004) Purification and glycosylation pattern of human L-ferritin in Pichia pastoris. J. Mocrobiol. Biotechnol. 14: 68-73.

Harrison, P. M., S. C. Andrews, P. J. Artymiuk, G. C. Ford, D. M. Lawson, J. M. A. Smith, A. Treffry, and J. L. White (1990) Ferritin. pp. 82-101. In: P. Ponka, H. M. Schulman, R. C. Woodworth (eds.). Iron Transport and Storage. CRC press.

Kim, S.-W., M.-Y. Jo, Y. Yokoda, Y.-J. Chung, C.-U. Park, and K.-S. Kim (2004) Reconstitution of iron cores in horse spleen and yeast-derived recombinant human H- and L-chain ferritins. Bull. Korean Chem. Soc. 25: 237-242. crossref(new window)

Wade, V. J., S. Levi, P. Arosio, A. Treffry, P. M. Harrison, and S. Mann (1991) Influence of site-directed modifications on the formation of iron cores in ferritin. J. Mol. Biol. 221: 1443-1452. crossref(new window)

Janney, D. E., J. M. Cowley, and P. R. Buseck (2000) Structure of synthetic 2-line ferrihydrite by electron nanodiffraction. Am. Mineral. 85: 118-1187. crossref(new window)

Kim, S.-W., H.-Y. Seo, Y.-B. Lee, Y.-S. Park, and K.-S. Kim (2008) Crystal structure of ferrihydrite nanoparticles synthesized in ferritin. Bull. Korean Chem. Soc. 29: 1969-1972. crossref(new window)