JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Flavonoid Glycosylation Using Microbial-produced Unusual Sugar
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 26, Issue 2,  2011, pp.93-99
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2011.26.2.093
 Title & Authors
Flavonoid Glycosylation Using Microbial-produced Unusual Sugar
Oh, Tae-Jin; Sohng, Jae-Kyung;
  PDF(new window)
 Abstract
Glycosylation is a key mechanism in determining diversity of natural products, and influencing their bioactivities. This approach requires a core set of glycosyltransferase that synthesizes the diverse sugar structures observed in nature. Recently, the researchers have begun to alter the sugar moiety and glycosylation patterns of natural products both in vivo E. coli system and in vitro for their glycodiversification. This review highlights new glycosylation tools using microbialproduced deoxysugar and a flexible glycosyltransferase on natural plant-flavonoids to generate novel glycoforms with useful biological activity.
 Keywords
Biosynthesis;Carbohydrate;Deoxysugar;Flavonoid;Glycosylation;Glycosyltransferase;
 Language
Korean
 Cited by
 References
1.
Bolen, D. W. (2001) Protein stabilization by naturally occurring osmolytes. Meth. Mol. Biol. 168: 17-36.

2.
Pilobello, K. T. and L. K. Mahal (2007) Deciphering the glycocode: the complexity and analytical challenge of glycomics. Curr. Opin. Chem. Biol. 11: 300-305. crossref(new window)

3.
Luzhetskyy, A., C. Mendez, J. A. Salas, and A. Bechthold (2008) Glycosyltransferases, important tools for drug design. Curr. Top. Med. Chem. 8: 680-709. crossref(new window)

4.
White-Phillip, J., C. J. Thibodeaux, and H. W. Liu (2009) Enzymatic synthesis of TDP-deoxysugars. Methods Enzymol. 459: 521-544. crossref(new window)

5.
Bongat, A. F. and A. V. Demchenko (2007) Recent trends in the synthesis of O-glycosides of 2-amino-2-deoxysugars. Carbohydr. Res. 342: 374-406. crossref(new window)

6.
Davies, G. J., T. M. Gloster, and B. Henrissat (2005) Recent structural insights into the expanding world of carbohydrateactive enzymes. Curr. Opin. Struct. Biol. 15: 637-645. crossref(new window)

7.
Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucl. Acids Res. 37: D233-D238. crossref(new window)

8.
Jank, T., T. Giesemann, and K. Aktories (2007) Rho-glucosylating Clostridium difficile toxins A and B: insights into structure and function. Glycobiology 17: 15R-22R. crossref(new window)

9.
Mittler, M., A. Bechthold, and G. E. Schulz (2007) Structure and action of the C-C bond-forming glycosyltransferase UrdGT2 involved in the biosynthesis of the antibiotic urdamycin. J. Mol. Biol. 372: 67-76. crossref(new window)

10.
Lim, E.-K. and D. J. Bowles (2004) A class of plant glycosyltransferases involved in cellular homeostasis. EMBO J. 23: 2915-2922. crossref(new window)

11.
Mendez, C., A. Luzhetskyy, A. Bechthold, and J. Salas (2008) Deoxysugars in bioactive natural products: development of derivatives by altering the sugar pattern. Curr. Med. Chem. 8: 710-724. crossref(new window)

12.
Karki, S., H. G. Yoo, S. Y. Kwon, J. W. Suh, and H. J. Kwon (2010) Cloning and in vitro characterization of dTDP-6-deoxy-L-talose biosynthetic genes from Kitasatospora kifunensis featuring the dTDP-6-deoxy-L-lyxo-4-hexulose reductase that synthesizes dTDP-6-deoxy-L-talose. Carbohydr. Res. 345: 1958-1962. crossref(new window)

13.
Wu, J. W., L. C. Lin, and T. H. Tsai (2009) Drug-drug interactions of silymarin on the perspective of pharmacokinetics. J. Ethnopharmacol. 121: 185-193. crossref(new window)

14.
Weymouth-Wilson, A. C. (1997) The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14: 99-110. crossref(new window)

15.
Oh, T. J., S. J. Mo, Y. J. Yoon, and J. K. Sohng (2007) Discovery and molecular engineering of sugar-containing natural product biosynthetic pathway in actinomycetes. J. Microbiol. Biotechnol. 17: 1909-1921.

16.
Pageni, B. B., T. J. Oh, K. Liou, Y. J. Yoon, and J. K. Sohng (2008) Genetically engineered biosynthesis of macrolide derivatives including 4-amino-4,6-dideoxy-L-glucose from Streptomyces venezuelae YJ003-OTBP3. J. Microbiol. Biotechnol. 18: 88-94.

17.
Pageni, B. B., T. J. Oh, H. C. Lee, and J. K. Sohng (2008) Metabolic engineering of noviose: heterologous expression of novWUS and generation of a new hybrid antibiotic, noviosylated 10-deoxymethynolide/narbonolide, from Streptomyces venezuelae YJ003-OTBP1. Biotechnol. Lett. 30: 1609-1615. crossref(new window)

18.
Pageni, B. B., T. J. Oh, J. C. Yoo, and J. K. Sohng (2008) Functional characterization of orf6 and orf9 genes involved in the biosynthesis of L-oleandrose from Streptomyces antibioticus Tu99. Biotechnol. Bioproc. Eng. 13: 752-757. crossref(new window)

19.
Pageni, B. B., T. J. Oh, and J. K. Sohng (2009) Novel desosaminyl derivatives of dihydrochalcomycin from a genetically engineered strain of Streptomyces sp. Biotechnol. Lett. 31: 1759-1768. crossref(new window)

20.
Madduri, K., J. Kennedy, G. Rivola, A. Inventi-Solari, S. Filippini, G. Zanuso, A. L. Colombo, K. M. Gewain, J. L. Occi, D. J. MacNeil, and C. R. Hutchinson (1998) Production of the antitumor drug epirubicin (4'-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nat. Biotechnol. 16: 69-74. crossref(new window)

21.
Griffith, B. R., J. M. Langenhan, and J. S. Thorson (2005) 'Sweetening' natural products via glycorandomization. Curr. Opin. Biotechnol. 16: 622-630. crossref(new window)

22.
Oh, J., S. G. Lee, B. G. Kim, J. K. Sohng, K. Liou, and H. C. Lee (2003) One-pot enzymatic production of dTDP-4-keto-6-deoxy- D-glucose from dTMP and glucose-1-phosphate. Biotechnol. Bioeng. 84: 452-458. crossref(new window)

23.
Lee, H. C., S. D. Lee, J. K. Sohng, and K. Liou (2004) One-pot enzymatic synthesis of UDP-D-glucose from UMP and glucose- 1-phsphate using an ATP regeneration system. J. Biochem. Mol. Biol. 37: 503-506. crossref(new window)

24.
Chung, Y. S., D. H. Kim, W. M. Seo, H. C. Lee, K. Liou, J. K. Sohng, and T. J. Oh (2007) Enzymatic synthesis of dTDP-4-amino- 4,6-dideoxy-D-glucose using GerB (dTDP-4-keto-6-deoxy-Dglucose aminotransferase). Carbohydr. Res. 342: 1412-1418. crossref(new window)

25.
Oh, T. J., D. H. Kim, S. Y. Kang, T. Yamaguchi, and J. K. Sohng (2011) Enzymatic synthesis of vancomycin derivatives using galactosyltransferase and sialyltransferase. J. Antbiot. 64: 103-109. crossref(new window)

26.
Kao, C. L., S. A. Borisova, H. J. Kim, and H. W. Liu (2006) Linear aglycones are the substrates for glycosyltransferase DesVII in methymycin biosynthesis: analysis and implications. J. Am. Chem. Soc. 128: 5606-5607. crossref(new window)

27.
Hoffmeister, D., G. Drager, K. Ichinose, J. Rohr, and A. Bechthold (2003) The C-glycosyltransferase UrdGT2 is unselective toward d- and I-configured nucleotide-bound rhodinoses. J. Am. Chem. Soc. 125: 4678-4679. crossref(new window)

28.
Salas, J. A. and C. Méndez (2007) Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol. 15: 219-232. crossref(new window)

29.
Luzhetskyy, A., H. Weiss, A. Charge, E. Welle, A. Linnenbrink, A. Vente, and A. Bechthold (2007) A strategy for cloning glycosyltransferase genes involved in natural product biosynthesis. Appl. Microbiol. Biotechnol. 75: 1367-1375. crossref(new window)

30.
Zhang, C., B. R. Griffith, Q. Fu, C. Albermann, X. Fu, I. K. Lee, L. Li, and J. S. Thorson (2006) Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science 313: 1291-1294. crossref(new window)

31.
Ahn, B. C., B. G. Kim, Y. M. Jeon, E. J. Lee, Y. Lim, and J. H. Ahn (2009) Formation of flavone di-O-glucosides using a glycosyltransferase from Bacillus cereus. J. Microbiol. Biotechnol. 19: 387-390. crossref(new window)

32.
Miyahisa, I., N. Funa, Y. Ohnishi, S. Martens, T. Moriguchi, and S. Horinouchi (2006) Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Appl. Microbiol. Biotechnol. 71: 53-58. crossref(new window)

33.
Katsuyama, Y., N. Funa, I. Miyahisa, and S. Horinouchi (2007) Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli. Chem. Biol. 14: 613-621. crossref(new window)

34.
Simhada, D., N. P. Kurumbang, H. C. Lee, and J. K. Sohng (2010) Exploration of glycosylated flavonoids from metabolically engineered E. coli. Biotech. Bioprocess Eng. 15: 754-760. crossref(new window)

35.
Simkhada, D., E. Kim, H. C. Lee, and J. K. Sohng (2010) Metabolic engineering of Escherichia coli for the biological synthesis of 7-O-xylosyl naringenin. Mol. Cells 28: 397-401. crossref(new window)

36.
Simkhada, D., H. C. Lee, and J. K. Sohng (2010) Genetic engineering approach for the production of rhamnosyl and allosyl flavonoids from Escherichia coli. Biotechnol. Bioeng. 107: 154-162. crossref(new window)