Advanced SearchSearch Tips
Mal-differentiation of Stem Cells: Cancer and Ageing
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 26, Issue 3,  2011, pp.183-188
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2011.26.3.183
 Title & Authors
Mal-differentiation of Stem Cells: Cancer and Ageing
Lee, Mi-Ok; Cha, Hyuk-Jin;
  PDF(new window)
Adult stem cells, which have characteristic of self-renewal and multipotency, are specialized cell types, responsible for the tissue regeneration of the damaged tissue. Recent studies suggest that stem cells senescence (or stem cells' ageing) is closely associated with the variety of ageing-related phenotypes such as tissue atrophy, degenerative diseases and onset of cancers. During ageing, declining of stem cells function and subsequently occurring mal-differentiation of stem cells would be important to understand the biological process of development of ageing-related phenotypes such as tissue degenerations and cancers. This review focuses on the DNA damage stress as a cause of senescence of stem cells and their mal differentiation, which is closely link to defect of regeneration potentials and neoplastic transformation. Understanding of molecular mechanisms governingsuch events is likely to have important implications for developing novel avenues for balancing tissue homeostasis longer period of time, further leading to 'Healthy ageing'.
Maldifferentiation;adult stem cell;ageing;DNA damage;cancer;tumor suppressor;healthy ageing;
 Cited by
Van Zant, G. and Y. Liang (2003) The role of stem cells in aging. Exp. Hematol. 31: 659-672. crossref(new window)

Snyder, E. Y. and J. F. Loring (2005) A role for stem cell biology in the physiological and pathological aspects of aging. J. Am. Geriatr. Soc. 53: S287-S291. crossref(new window)

Flores, I., A. Canela, E. Vera, A. Tejera, G. Cotsarelis, and M. A. Blasco (2008) The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 22: 654-667. crossref(new window)

Finkel, T., M. Serrano, and M. A. Blasco (2007) The common biology of cancer and ageing. Nature 448: 767-774. crossref(new window)

Rando, T. A. (2006) Stem cells, ageing and the quest for immortality. Nature 441: 1080-1086. crossref(new window)

Watt, F. M. and B. L. Hogan (2000) Out of Eden: stem cells and their niches. Science 287: 1427-1430. crossref(new window)

Hodgson, G. S. and T. R. Bradley (1984) In vivo kinetic status of hematopoietic stem and progenitor cells as inferred from labeling with bromodeoxyuridine. Exp. Hematol. 12: 683-687.

Pas segue, E., A. J. Wagers, S. Giuriato, W. C. Anderson, and I. L. Weissman (2005) Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202: 1599-1611. crossref(new window)

Rossi, D. J., D. Bryder, J. M. Zahn, H. Ahlenius, R. Sonu, and A. J. Wagers, I. L. Weissman (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl. Acad. Sci. USA 102: 9194-9199. crossref(new window)

Sahin, E. and R. A. Depinho (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464: 520-528. crossref(new window)

Hawke, T. J. and D. J. Garry (2001) Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol. 91: 534-551.

Brack, A. S., M. J. Conboy, S. Roy, M. Lee, C. J. Kuo, C. Keller, and T. A. Rando (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317: 807-810. crossref(new window)

Lichtman, M. A. and J. M. Rowe (2004) The relationship of patient age to the pathobiology of the clonal myeloid diseases. Semin. Oncol. 31: 185-197. crossref(new window)

Linton, P. J. and K. Dorshkind (2004) Age-related changes in lymphocyte development and function. Nat. Immunol. 5: 133-139.

Guralnik, J. M., R. S. Eisenstaedt, L. Ferrucci, H. G. Klein, and R. C. Woodman (2004) Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood 104: 2263-2268. crossref(new window)

Kollman, C., C. W. Howe, C. Anasetti, J. H. Antin, S. M. Davies, A. H. Filipovich, J. Hegland, N. Kamani, N. A. Kernan, R. King, V. Ratanatharathorn, D. Weisdorf, and D. L. Confer (2001) Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood 98: 2043-2051. crossref(new window)

Rossi, D. J., C. H. Jamieson, and I. L. Weissman (2008) Stems cells and the pathways to aging and cancer. Cell 132: 681-696. crossref(new window)

Kuhn, H. G., H. Dickinson-Anson, and F. H. Gage (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16: 2027-2033.

Encinas, J. M., T. V. Michurina, N. Peunova, J. H. Park, J. Tordo, D. A. Peterson, G. Fishell, A. Koulakov, and G. Enikolopov (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8: 566-579. crossref(new window)

Enwere, E., T. Shingo, C. Gregg, H. Fujikawa, S. Ohta, and S. Weiss (2004) Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J. Neurosci. 24: 8354-8365. crossref(new window)

Drapeau, E. and D. Nora Abrous (2008) Stem cell review series: role of neurogenesis in age-related memory disorders. Aging Cell 7: 569-589. crossref(new window)

Colmegna, I., A. Diaz-Borjon, H. Fujii, L. Schaefer, J. J. Goronzy, and C. M. Weyand (2008) Defective proliferative capacity and accelerated telomeric loss of hematopoietic progenitor cells in rheumatoid arthritis. Arthritis Rheum. 58: 990-1000. crossref(new window)

Oliveras, A., M. J. Soler, O. M. Martinez-Estrada, S. Vazquez, D. Marco-Feliu, J. S. Vila, S. Vilaro, and J. Lloveras (2008) Endothelial progenitor cells are reduced in refractory hypertension. J. Hum. Hypertens 22: 183-190. crossref(new window)

Ruzankina, Y., C. Pinzon-Guzman, A. Asare, T. Ong, L. Pontano, G. Cotsarelis, V. P. Zediak, M. Velez, A. Bhandoola, and E. J. Brown (2007) Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1: 113-126. crossref(new window)

Roggli, V. L., R. T. Vollmer, S. D. Greenberg, M. H. McGavran, H. J. Spjut, and R. Yesner (1985) Lung cancer heterogeneity: a blinded and randomized study of 100 consecutive cases. Hum. Pathol. 16: 569-579. crossref(new window)

Klein, C. A., T. J. Blankenstein, O. Schmidt-Kittler, M. Petronio, B. Polzer, N. H. Stoecklein, and G. Riethmuller (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360: 683-689. crossref(new window)

Fialkow, P. J., G. B. Faguet, R. J. Jacobson, K. Vaidya, and S. Murphy (1981) Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 58: 916-919.

Sell, S. and H. A. Dunsford (1989) Evidence for the stem cell origin of hepatocellular carcinoma and cholangiocarcinoma. Am. J. Pathol. 134: 1347-1363.

Cairns, J. (1975) Mutation selection and the natural history of cancer. Nature 255: 197-200. crossref(new window)

Karpowicz, P., C. Morshead, A. Kam, E. Jervis, J. Ramunas, V. Cheng, and D. van der Kooy (2005) Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. J. Cell BioI. 170: 721-732. crossref(new window)

Kiel, M. J., S. He, R. Ashkenazi, S. N. Gentry, M. Teta, J. A. Kushner, T. L. Jackson, and S. J. Morrison (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449: 238-242. crossref(new window)

Lansdorp, P. M. (2007) Immortal strands? Give me a break. Cell 129: 1244-1247. crossref(new window)

Rando, T. A. (2007) The immortal strand hypothesis: segregation and reconstruction. Cell 129: 1239-1243. crossref(new window)

Bonnet, D. and J. E. Dick (1997) Human acute myeloid leukemia is organized as a hicrarchy that originates from a primitive hematopoietic cell. Nat. Med. 3: 730-737. crossref(new window)

AI-Hajj, M., M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke (2003) Prospective identification ofturnorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100: 3983-3988. crossref(new window)

Bjerkvig, R., B. B Tysnes, K. S. Aboody, J. Najbauer, and A. J. Terzis (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat. Rev. Cancer 5: 899-904. crossref(new window)

Tirode, F., K. Laud-Duval, A. Prieur, B. Delonne, P. Charbord, and O. Delattre (2007) Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11: 421-429. crossref(new window)

Riggi, N., M. L. Suva, D. Suva, L. Cironi, P. Provero, S. Tercier, J. M. Joseph, J. C. Stehle, K. Baumer, V. Kindler, and I. Stamenkovic (2008) EWS-FLI-l expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res. 68: 2176-2185. crossref(new window)

Miyagawa, Y., H. Okita, H. Nakaijima, Y. Horiuchi, B. Sato, T. Taguchi, M. Toyoda, Y. U. Katagiri, J. Fujimoto, J. Hata, A. Umezawa, and N. Kiyokawa (2008) Inducible expression of chimeric EWSIETS proteins confers Ewing's family tumor-like phenotypes to human mesenchymal progenitor cells. Mol. Cell BioI. 28: 2125- 2137. crossref(new window)

Barker, N., R. A. Ridgway, J. H. van Es, M. van de Wetering, H. Begthel, M. van den Born, E. Danenberg, A. R. Clarke, O. J. Sansom, and H. Clevers (2009) Crypt stem cells as the cells-oforigin of intestinal cancer. Nature 457: 608-611. crossref(new window)

Alcantara, S. Llaguno, J. Chen, C. H. Kwon, E. L. Jackson, Y. Li, D. K. Bums, A. Alvarez-Buylla, and L. F. Parada (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15: 45-56. crossref(new window)

Wang, X., M. Kruithof-de Julio, K. D. Economides, D. Walker, H. Yu, M. V. Halili, Y. P. Hu, S. M. Price, C. Abate-Shen, and M. M. Shen (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461: 495-500. crossref(new window)

Lapouge, G., K. K. Youssef, B. Vokaer, Y. Achouri, C. Michaux, P. A. Sotiropoulou, and C. Blanpain (2011) Identifying the cellular origin of squamous skin tumors. Proc. Natl. Acad. Sci. USA 108: 7431-7436. crossref(new window)

Youssef, K. K., A. Van Keymeulen, G. Lapouge, B. Beck, C. Michaux, Y. Achouri, P. A. Sotiropoulou, and C. Blanpain (2010) Identification of the cell lineage at the origin of basal cell carcinoma. Nat. Cell BioI. 12: 299-305.

Kirkwood, T. B. (2005). Understanding the odd science of aging. Cell 120: 437-447. crossref(new window)

Rube, C. E., A. Fricke, T. A. Widmann, T. Furst, H. Madry, M. Pfreundschuh, and C. Rube (2011) Accumulation of DNA damage in hematopoictic stem and progenitor cells during human aging. PLoS One 6: e17487. crossref(new window)

Sharpless, N. E. and R. A. DePinho (2007) How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell BioI. 8: 703-713. crossref(new window)

Navarro, S., N. W. Meza, O. Quintana-Bustamante, J. A. Casado, A. Jacome, K. McAllister, S. Puerto, J. Surralles, J. C. Segovia, and J. A. Bueren (2006) Hematopoietic dysfunction in a mouse model for Fanconi anemia group D1. Mol. Ther. 14: 525-535. crossref(new window)

Reese, J. S., L. Liu, and S. L. Gerson (2003) Repopulating defect of mismatch repair-deficient hematopoietic stem cells. Blood 102: 1626-1633. crossref(new window)

Prasher, J. M., A. S. Lalai, C. Heijmans-Antonissen, R. E. Plocmacher, J. H. Hoeijrnakers, I. P. Touw, and L. J. Niedernhofer (2005) Reduccd hematopoietic reserves in DNA interstrand crosslink repair-deficient Erccl-/- mice. EMBO J. 24: 861-871. crossref(new window)

Morales, M., J. W. Theunissen, C. F. Kim, R. Kitagawa, M. B. Kastan, and J. H. Petrini (2005) The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mrell complex as a DNA damage sensor. Genes Dev. 19: 3043-3054. crossref(new window)

Rossi, D. J., D. Bryder, J. Seita, A. Nussenzweig, J. Hoeijrnakers, and I. L. Weissman (2007) Deficiencies in DNA damage repair limit the function ofhaematopoietic stem cells with age. Nature 447: 725-729. crossref(new window)

Wang, Y., B. Schulte, A. LaRue, M. Ogawa, and D. Zhou (2006) Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107: 358-366. crossref(new window)

Vijg, J., R. A. Busuttil, R. Bahar, and M. E. Dolle (2005) Aging and genome maintenance. Ann. NY Acad. Sci. 1055: 35-47. crossref(new window)

Park, Y. and S. L. Gerson (2005) DNA repair defects in stem cell function and aging. Annu. Rev. Med. 56: 495-508. crossref(new window)

Jaskelioff, M., F. L. Muller, J. H. Paik, E. Thomas, S. Jiang, A. C. Adams, E. Sahin, M. Kost-Alimova, A. Protopopov, J. Cadinanos, J. W. Horner, E. Maratos-Flier, and R. A. Depinho (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469: 102-106. crossref(new window)

Campisi, J. (2003) Cancer and agcing: rival demons? Nat. Rev. Cancer 3: 339-349. crossref(new window)

Serrano, M. and M. A. Blasco (2007) Cancer and ageing: convergent and divergent mechanisms. Nat. Rev. Mol. Cell BioI. 8: 715-722. crossref(new window)