Advanced SearchSearch Tips
Bioethanol Production Based on Crude Glycerol Using Enterobacter aerogenes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 26, Issue 3,  2011, pp.223-228
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2011.26.3.223
 Title & Authors
Bioethanol Production Based on Crude Glycerol Using Enterobacter aerogenes
Jung, Hong-Sub; Seong, Pil-Je; Go, A-Ra; Lee, Sang-Jun; Kim, Seung-Wook; Han, Sung-Ok; Cho, Jae-Hoon; Cho, Dae-Haeng; Kim, Yong-Hwan; Park, Chul-Hwan;
  PDF(new window)
The effects of pH, glycerol concentration and salt on cell growth and ethanol production using Enterobacter aerogenes KCTC 2190 were evaluated in the anaerobic culture condition. In condition of initial pH 5, cell growth and ethanol production were highest. An initial concentration of 10 g/L of pure glycerol gave the highest cell growth and ethanol production. However, in case of over 15 g/L of pure glycerol, they decreased. The cell growth and ethanol production decreased with the increase of salt concentration. When 10 g/L of crude glycerol was used as the carbon source, the cell growth and ethanol production were and 3.95 g/L, respectively, which were about 94.4% and 88.5% compared to those of pure glycerol. These result indicates that the crude glycerol produced in the biodiesel manufacturing process maybe useful as a potential carbon source for ethanol production form Enterobacter aerogenes KCTC 2190.
Enterobacter aerogenes;ethanol;glycerol;crude glycerol;
 Cited by
글리세롤 기반의 바이오에탄올 생산을 위한 연속생산반응기의 성능 비교,이상준;송윤석;김성봉;강성우;한성옥;박철환;김승욱;

KSBB Journal, 2011. vol.26. 4, pp.328-332 crossref(new window)
산 및 효소 가수분해를 이용한 홍조류로부터 바이오 에탄올 생산,최수정;이성목;이재화;

공업화학, 2012. vol.23. 3, pp.279-283
International Energy Agency, World Energy Outlook 2009.

Yazdani, S. S. and R. Gonzalez (2007) Anaerobic fennentation of glycerol: a path to economic viability for the biofuels industry. Curr, Opin. Biotech. 18: 213-219. crossref(new window)

Alcantara, R., J. Amores, L. Canoira, E. Fidalgo, M. J. Franco, and A. Navarro (2000) Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass Bioenerg. 18: 515-527. crossref(new window)

Papanikolaou, S., L. Muniglia, I. Chevalot, G. Aggelis, and I. Marc (2002) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J. Appl. Microbiol. 92: 737-744. crossref(new window)

Gonzalez-Pajuelo, M., J. C. Andrade, and I. Vasconcelos (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J. Ind. Microbiol. Biot. 31: 442-446. crossref(new window)

Mu, Y, H. Teng, D.-J. Zhang, W. Wang, and Z.-L. Xiu (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol biodiesel preparations. Biotechnol. Lett. 28: 1755-1759. crossref(new window)

WilIke, T. and K.-D. Vorlop (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. J. Appl. Microbiol. 66: 131-142.

Deckwer, W.-D. (1995) Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol. Rev. 16: 143-149.

Franceschina, G., A. Zamboni, F. Bezzoa, and A. Bertucco (2008) Ethanol from corn: a technicaland economical assessment based on different scenarios. Chem. Eng. Res. Des. 86: 488-498. crossref(new window)

Seifert, C., S. Bowien, G. Gottschalk, and R. Daniel (2001) Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. Eur. J. Biochem. 268: 2369-2378. crossref(new window)

Nemeth, A., B. Kupcsulik, and B. Scvella (2003) 1,3-Propanediol oxidoreductase production with Klebsiella pneumoniae DSM2026. World J. Microb. Biot. 19: 659-663. crossref(new window)

Biebl, H. (2001) Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies. J. Ind. Microbiol. Biot. 27: 18-26. crossref(new window)

Malaoui, H. and R Marczak (2001) Separation and characterization of the 1,3-propanediol and glycerol dehydrogenase activities from Clostridium butyricum E5 wild-type and mutant D. J. Appl. Microbiol. 90: 1006-1014. crossref(new window)

Barbirato, F. and A. Bories (1997) Relationship between the physiology of Enterobacter agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions. Res. Microbiol. 148: 475-484. crossref(new window)

Talarico, T. L., L. T. Axelsson, J. Novotny, M. Fiuzat, and W. J. Dobrogosz (1990) Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol: $NAD^+$ oxidoreductase. Appl. Environ. Microb. 56: 943-948.

Ito, T., Y. Nakashimada, K. Senba, T. Matsui, and N. Nishio (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 100: 260-265. crossref(new window)

Fanga, Q.-H. and J .-J. Zhong (2002) Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem. 37: 769-774. crossref(new window)

Durre, P., H. Bahl, and G. Gottschalk (1988) Membrane processes and product formation in anaerobes. pp. 187-205. In: L. E. Erickson, and D. Y.-C. Fung (eds.). Handbook on anaerobic fermentation. Marcel Dekker, NY, USA.

Zeng, A.-P., H. Biebl, and W.-D. Deckwer(1990) Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Appl. Microbiol. Biotechnol. 33: 485-489.

Bowles, L. K. and W. L. Ellefson (1985) Effects of Butanol on Clostridium acetobutylicum. Appl. Environ. Microb. 50: 1165-1170.

Nath, K. and D. Das (2009) Etfect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process. Int. J. Hydrogen Energ. 34: 7497-7501. crossref(new window)

Madigan, M. T., J. M. Martinko, P. V. Dunlap, and D. P. Clark (2009) Brock biology of microorganisms. 12th ed., pp. 167-169. Pearson Education, Pearson Benjamin Cummings, San Francisco, USA.

Ginkel, S. V., S. Sung, and J. -J. Lay (2001 ) Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35: 4726-4730. crossref(new window)

Fabiano, B. and P. Perago (2002) Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energ. 27: 149-156. crossref(new window)

Zheng, X. J., Y. M. Zheng, and H. Q. Yu (2005) Influence of NaCI on hydrogen production from glucose by anaerobic cultures. Environ. Technol. 26: 1073-1080. crossref(new window)

Das, D. and T. N. Veziroglu (2001) Hydrogen production by biological process: A survey of literature. Int. J. Hydrogen Energ. 26: 13-28. crossref(new window)

Niel, E. W. J., P. A. M. Claassen, and A. J. M. Starns (2003) Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol. Bioenerg. 81: 255-262. crossref(new window)

Fan, D. P. (1970) Cell wall binding properties of the Bacillus subtilis autolysin (s). J. Bacteriol. 103: 488-493.

Jolliffie, L. K, R. J. Doyle,and U. N. Streips (1981) The energized membrane and cellular autolysis in Bacillus subtilis. Cell 25: 753-763. crossref(new window)

Hamana, K., H. Hamana, M. Niitsu, and K. Samejima (1996) Polyamines of thermophilic gram-positive anaerobes belonging to genera Caldicelluiosiruptor, Caioramator, Clostridium, Coprothermobactel, Moorella, Thermoanaerobacter and Thermoanaerobacterium. Microbios. 85: 213-222.