JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Enhancement of Saccharification Yield of Ulva pertusa Kjellman by High Pressure Homogenization Process for Bioethanol Production
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 26, Issue 5,  2011, pp.400-406
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2011.26.5.400
 Title & Authors
Enhancement of Saccharification Yield of Ulva pertusa Kjellman by High Pressure Homogenization Process for Bioethanol Production
Choi, Woon-Yong; Lee, Choon-Geun; Ahn, Ju-Hee; Seo, Yong-Chang; Lee, Sang-Eun; Jung, Kyung-Hwan; Kang, Do-Hyung; Cho, Jeong-Sub; Choi, Geun-Pyo; Lee, Hyeon-Yong;
  PDF(new window)
 Abstract
This study was investigated to improve the saccharification yield of Ulva pertusa Kjellman by the high pressure homogenization process. It was found that the high pressure homogenization pretreatment effectively destructed the cell wall structures only by using water. The high pressure homogenization process was operated under various conditions such as 10000, 20000 or 30000 psi with different recycling numbers. The optimal condition was determined as 30000 psi and 2 pass of recycling numbers and the sugar conversion yields were 16.02 (%, w/w) of glucose and 14.70 (%,w/w) of xylose, respectively. In the case of enzymatic treating the hydrolyzates with 5 FPU/glucan of celullase and 100 units/mL of amyloglucosidase, 65.8% of carbohydrates was converted into glucose. Using the hydrolysates of Ulva pertusa Kjellman, 48.7% of ethanol was obtained in the culture S.cerevisiae. These results showed that the high pressure homogenization process could efficiently hydrolyze the marine resource by using only water for bioethanol production.
 Keywords
Ulva pertusa kjelmann;high pressure homogenization process;sugar yields;HMF;bioethanol production;
 Language
Korean
 Cited by
 References
1.
Wright, L. (2006) Worldwide commercial development of bioenergy with a focus on energy crop-based project. Biomass Bioenerg. 30: 706-714. crossref(new window)

2.
Saulnier, L., C. Marot, E. Chanliaud, and J. F. Thibault (1995) Cell wall polysaccharide interaction in maize bran. Carbohydr. Polym. 26: 279-287. crossref(new window)

3.
Kloareg, B. and R. S. Quatrano (1988) Structure of the cell walls of marine algae and ecophysical function of the matrix polysaccharides. Oceanogr. Mar. Biol. Ann. Rev. 26: 259-315.

4.
Davis, T. A., B. Volesky, and A. Mucci (2003) A Review of the Bio-chemistry of heavy metal biosorption by brown algae. Water Res. 37: 4311-4330. crossref(new window)

5.
Yu, Q. and P. Kaewsarn (1999) A model for pH dependent equilibrium of heavy metal biosorption. Korean J. Chem. Eng. 16: 753-757. crossref(new window)

6.
Lee, M. G., J. H. Lim, and S. K. Kam (2002) Biosorption characteristics in the mixed heavy metal solution by biosorbents of marine brown algae. Korean J. Chem. Eng. 19: 277-284. crossref(new window)

7.
Munoz, R. and B. Guieysse (2006) Algal-bacterial processes for the treatment of hazardous contaminant: A Review. Water Res. 40: 2799-2815. crossref(new window)

8.
Sugano, Y., H. Kodama, I. Terada, Y. Yamajakiand, and M. Noma (1994) Purification and characterization of a novel enzyme, $\alpha$-neoagararooligosaccharide hydrolase, from a marine bacterium, Vibrio sp. strain JT0107. J. Bacteriol. 176: 6812-6818.

9.
Han, J. G., S. H. Oh, M. H. Jeong, H. B. Seo, K. H. Jeong, and H. Y. Lee (2010) Enhancement of saccharification yield of Ulva pertusa kjellman for ethanol production through high temperature liquefaction process. KSBB Journal. 25: 245-362.

10.
Lishi, Y., Z. Hongman, C. Jingwen, L. Zengxiang, J. Qiang, J. Honghua, and H. He (2008) Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresour. Technol. 100: 1803-1808.

11.
Koo, S. Y., K. H. Cha, and D. U. Lee (2007) Effects of high hydrostatic pressure of foods and biological system. Food Sci. lnd. 40: 23-30.

12.
Zhang, S., J. Zhu, and C. Wang (2004) Novel high pressure extraction technology. Inter. J. Pharma. 278: 471-474. crossref(new window)

13.
Gray, K. A., L. Zhao, and M. Emphage (2006) Bioethanol. Curr. Opin. Chem. Biol. 10: 1-6. crossref(new window)

14.
Linde, M., M. Galbe, and G. Zacchi (2008) Bioethanol production from non-starch carbohydrate residues in process stream from a dry-mill ethanol plant. Bioresour. Technol. 99: 6505-6511. crossref(new window)

15.
Mosier, N., R. Hendrickson, M. Ho, M. Sedlak, and M. R. Ladisch (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993. crossref(new window)

16.
Choi, J. W., H. J. Lim, K. S. Han, H. Y. Kang, and D. H. Choi (2005) Characterization of degradation features and degradative product of poplar wood (populus alba ${\times}$ glandulosa) by flow type-supercritical water treatment. J. Kor. For. En. 24: 39-46.

17.
Nathan, M., W. Charles, D. Bruce, E. Richard, Y. Y. Lee, H. Mark, and L. Michael (2005) Features of promising thechnologies for pretreatments of lignocellulosic biomass. Bioresour. Technol. 96: 673-686. crossref(new window)

18.
Chaogang, L. and C. E. Wyman (2005) Partial flow of compressedhot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour. Technol. 96: 1978-1985. crossref(new window)

19.
Lishi, Y., Z. Hongman, C. Jingwen, L. Zengxiang, J. Qiang, J. Honghua, and H. He (2008) Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresour. Technol. 100: 1803-1808.

20.
Nikolic, S., L. Mojovic, M. Rakin, D. Pejin, and D. Savic (2008) A microwave assisted liquefaction as a pretreatment for the bioethanol production by the simultaneous saccharification and fermentation of corn meal. Chem. Ind. Chem. Eng. Quart. 14: 231-234. crossref(new window)

21.
Kong, J. A., Y. S. Han, and T. Han (2002) Rhythmic phenomena in the green alga Ulva pertusa kjellman. Algae. 17: 259-265. crossref(new window)