Advanced SearchSearch Tips
Distribution of Electrochemically Active Bacteria in Activated Sludge Characteristics
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 26, Issue 5,  2011, pp.407-411
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2011.26.5.407
 Title & Authors
Distribution of Electrochemically Active Bacteria in Activated Sludge Characteristics
Son, Hyeng-Sik; Son, Hee-Jong; Kim, Mi-A; Lee, Sang-Joon;
  PDF(new window)
Microbial fuel cell (MFC) wes enriched using sludge in wastewater treatment. The microbial community of activated sludge and enriched MFC were analyzed by FISH (fluorescent in situ hybridization) and 16S rDNA sequencing. Bacteroidetes group were pre-dominant in activated sludge by FISH. group, group and Acintobacter group were dominant and they were similar to distribution. The average value of 10 peak of MFC is 0.44C. When MFC wase enriched by sludge, -Proteobacteria, Plantomycetes group increased 70% and 60%, respectively. In results of 16S rDNA sequencing, Sphiringomonas sp. was comprised in proteobacteria and Enterobacter sp., Klebsiella sp., Acinetobacter sp., Bacillus sp. were comprised in proteobacteria and Chryseobacterium sp. was comprised in Flavobacteria were isolated from sludge.
Microbial Fuel Cell;Sludge;Microbial Community;FISH;16S rDNA;
 Cited by
Park, D. H. and J. D. Zeikus (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292-1297. crossref(new window)

Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme. Microb. Technol. 30: 145-152. crossref(new window)

Liu, H., R. Ramnarayanan, and B. E. Logan (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38: 2281-2285. crossref(new window)

Kim, T. S. and B. H. Kim (1998) Modulation of Clostridium acetobutylicum fermantation by electrochemically supplied reducing equivalent. Biotechnol. Lett. 10: 123-128.

Park, H. S., B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang (2001) A novel electrochemically active and Fe (III) reducing bacterium phylogenetically related to Clostridium butyricum isolated from a bacterial fuel cell. Anaerobe. 7: 297-306. crossref(new window)

Kim, G. T., M. S. Hyun, I. S. Chang, H. J. Kim, H. S. Park, B. H. Kim, S. M. Kim, and J. W. T. Wimpenny (2005) Dissimilatory Fe (III) reduction by electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J. Appl. Microbiol. 99: 978-987. crossref(new window)

Chaudhuri, S. K. and D. R. Lovley (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232. crossref(new window)

Lovley, D. R., S. J. Giovannoni, D. C. White, J. E. Champine, E. J. P. Phillips, Y. A. Gorby, and S. Goodwin (1993) Geobacter metallireducens gen. nov. sp. now., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron, and other metals. Arch. Microbiol. 159: 336-344. crossref(new window)

Caccavo, F., J. D. Coates, R. A. Rossello-Mora, W. Ludwig, K. H. Schleifer, D. R. Lovley, and M. J. McInerney (1996) Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe (III)- reducing bacterium. Arch. Microbiol. 165: 370-376. crossref(new window)

Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 295: 483-485. crossref(new window)

Lovley, D. R., E. J. P. Phillips, and D. J. Lonergan (1989) Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55: 700-706.

Lovley, D. R., F. Caccavo, and E. J. P. Phillips (1992) Acetate oxidation by dissimilatory Fe (III) reducers. Appl. Environ. Microbiol. 58: 3205-3206.

Tebo, B. M. and A. Y. Obraztsova (1998) Sulfate-reducing bacterium grows with Cr (VI), U (VI), Mn (IV), and Fe (III) as electron acceptors. FEMS Microbiol. Lett. 162: 193-198. crossref(new window)

Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and T. N. Phung (2004) Enrichment of microbial community generating electrocity using a fuel cell type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681. crossref(new window)

Nübel, U., F. Garcia-Pichel, and G. Muyzer (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63: 3327-3332.

Wagner, M., R. Amann, H. Lemmer, and K. Scheleifer (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59: 1520-1525.

Glockner, F. O., B. M. Fuchs, and R. Amann (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65: 3721-3726.

Wagner, M., R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedi, and K. H. Schleifer (1994) Development of an rRNA-targeted oligonucleotide probe specific for the genus acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbial. 60: 792-800.

Neef, A., R. Amann, H. Schlesner, and K. Scheleifer (1998) Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiol. 144: 3257-3266. crossref(new window)

Juretschko, S., A. Loy, A. Lehner, and M. Wagner (2002) The Microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA Approach. Syst. Appl. Microbiol. 25: 84-99. crossref(new window)

Manz, W., M. Eisenbrecher, T. R. Neu, and U. Szewzyk (1998) Abundance and spatial organization of gram-negative sulfatereducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol. 25: 43-61. crossref(new window)

Meier, H., R. Amann, W. Ludwig, and K. H. Schleifer (1999) Specific oligonucleotide probes for In situ detection of a major group of gram-positive bacteria with Low DNA G+C content. Syst. Appl. Microbiol. 22: 186-196. crossref(new window)

Eschenhagen, M., M. Schuppler, and I. Röske (2003) Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Res. 37: 3224-3232. crossref(new window)

Adav, S. S., D. J. Lee, and J. Y. Lai (2009) Biological nitrificationdenitrification with alternating oxic and anoxic operations using aerobic granules. Appl. Microbiol. Biotechnol. 84: 1181-1189. crossref(new window)

Lee, J., N. T. Phung, I. S. Chang, B. H. Kim, and H. C. Sung (2003) Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett. 223: 185-191. crossref(new window)

Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681. crossref(new window)

Aelterman, P., K. Rabaey, T. H. Pham, N. Boon, and W. Verstraete (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40: 3388-3394. crossref(new window)