JOURNAL BROWSE
Search
Advanced SearchSearch Tips
1,2-Propanediol Production by Using Saccharomyces cerevisiae M3G3
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 26, Issue 5,  2011, pp.439-442
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2011.26.5.439
 Title & Authors
1,2-Propanediol Production by Using Saccharomyces cerevisiae M3G3
Koo, Ja-Ryong; DaSilva, Nancy A.; Yun, Hyun-Shik;
  PDF(new window)
 Abstract
1,2-propanediol (1,2-PD) is a commodity chemical that is currently produced from petrochemical derivatives. Saccharomyces cerevisiae is well characterized and a successful industrial microorganism to enable the improvement of the 1,2-propanediol production by metabolic engineering. A recombinant S. cerevisiae M3G3 was used to produce 1,2-propanediol. S. cerevisiae M3G3 is the diploid strain that contains 3 copies of mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase). S. cerevisiae M3G3 was cultivated at various culture conditions by changing culture temperature, glucose concentration, and inducer concentration. Also the effect of induction time was studied to optimize the production of 1,2-propanediol. Batch and fed-batch cultivation of S. cerevisiae M3G3 was performed by using a 5 L jar fermenter. The highest concentration of 1,2-propanediol in batch cultivation was 0.86 g/L and it was further improved to 1.33 g/L in fed-batch cultivation.
 Keywords
1,2-Propanediol;Saccharomyces cerevisiae;mgs;gldA;fermentation;
 Language
Korean
 Cited by
 References
1.
Saxena, R. K., P. Anand, S. Saran, J. Isar, and L. Agarwal (2010) Microbial production and applications of 1,2-propanediol. Ind. J. Microbiol. 10: 2-11.

2.
Hoffman, M. L. (1999) Metabolic engineering of 1,2-propanediol production in Saccharomyces cerevisiae. Ph. D. Thesis. University of Wisconsin, Madison, WI, USA.

3.
Altaras. N. E. and D. C. Carmeron (2000) Enhanced production of (R)1,2-propanediol by metabolically engineered Escherichia coli. Biotechnol. Prog. 16: 940-946. crossref(new window)

4.
Carmeron, D. C., N. E. Altaras, M. L. Hoffman, and A. J. Shaw (1998) Metabolic engineering of propanediol pathways. Biotechnol. Prog. 14: 116-125. crossref(new window)

5.
Behr, A., J. Eilting, K. Irawadi, J. Leschinski, and F. Lindner (2007) Improved utilization of renewable resources: New important derivatives of glycerol. Green Chem. 10: 13-30.

6.
Anonymous. Chemical profile propylene glycol (PG). www. icis.com.

7.
Anonymous. (1998) Propylene glycol: Chemical profile. In Chemical Marketing Reporter 254: 33.

8.
Bennett, G. N. and K. Y. San (2001) Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl. Microbiol. Biotechnol. 55: 1-9. crossref(new window)

9.
Altaras, N. E. and D. C. Carmeron (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl. Environ. Microbiol. 65: 1180-1185.

10.
Lenth, C. W. and R. N. D. Puis (1945) Polyhydric alcohol production by hydrogenolysis of sugars in the presence of copper-aluminum oxide. Ind. Eng. Chem. 37:152-157. crossref(new window)

11.
Jung, J. Y., E. S. Choi, and M. K. Oh (2008) Enhanced production 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae. J. Microbiol. Biotech. 18: 1797-1802.

12.
Clomburg, J. M. and R. Gonzalez (2010) Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol. Bioeng. 108: 867-879.

13.
Lee, W. and N. A. DaSilva (2006) Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metabol. Eng. 8: 58-65. crossref(new window)

14.
Amberg, D. C., D. J. Burke, and J. N. Strathern (2005) pp. 199-209 Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring, NY, USA.

15.
Sherman, F. (2002) Getting started with yeast. pp. 3-41. In: Guthrie, C. and G. R. Fink (eds.). Methods in Enzymology: Guide to Yeast Genetics and Molecular and Cell Biology, Academic Press. San Diego, California.

16.
Carlson, M. (1999) Glucose repression in yeast. Curr. Opin. Microbiol. 2: 202-207. crossref(new window)

17.
Etcheverry, T. (1990) pp. 319-329. In: Goeddel, D. V. (ed.) Induced expression using yeast copper metallothionein promoter. Methods in Enzymology: Gene Expression Technology, Academic Press. San Diego, California.

18.
Koller, A., J. Valesco, and S. Subramani (2000) The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. Yeast. 16: 651-656. crossref(new window)

19.
Torija, M. (2003) Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. Int. J. Food Microbiol. 80: 47-53. crossref(new window)

20.
Lee, F. W. F. (1996) Amplification and expression of heterologous genes in Saccharomyces cerevisiae. Ph. D. Thesis. University of California, Irvine, CA, USA.

21.
Avery, S. V., N. G. Howlett, and S. Radice (1996) Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl. Environ. Microbiol. 62: 3960-3966.