Advanced SearchSearch Tips
Isolation and Characterization of Xylanolytic Bacteria from Horse Manure
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 26, Issue 5,  2011, pp.465-470
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2011.26.5.465
 Title & Authors
Isolation and Characterization of Xylanolytic Bacteria from Horse Manure
Kim, Jung-Kon; Kim, Tae-Hyun;
  PDF(new window)
Twenty six microorganisms were isolated from soil and horse manure samples from in Iowa, U.S. Microorganisms were cultivated and screened by using plate count agar (PCA) at containing 1% (w/v) oat spelt xylan instead of glucose. The xylanase activities of bacterial strains were analyzed by measuring the concentration of reducing sugar by DNS method. All isolated strains were characterized as the rod form and gram positive strains. Among the isolated strains, the HM6 strains gave the highest xylanase activity. This strain was identified as Bacillus pumilus HM6 by 16S rDNA sequence, morphological and biochemical analysis. Optimal culture temperature and initial medium pH for B. pumilus HM6 were and pH 6-7, respectively. The maximum xylanase activity of 6879 IU/mL was obtained after growth of HM6 with 1% (w/v) oat spelt xylan at for 6 days. Studies on enzymatic properties showed that the optimum conditions for the highest xylanase activity were and pH 8.0. In addition, xylanase activity was stable over 2 hours at , whereas activity decreased after 30 min at .
Bacillus pumilus;xylanase;lignocellulosic biomass;hemicellulose;
 Cited by
Shallom, D. and Y. Shoham (2003) Microbial hemicellulases. Curr. Opin. Microbiol. 6: 219-228. crossref(new window)

Lee, L. H., D. Y. Kim, M. K. Han, H. W. Oh, S. J. Ham, D. S. Park, K. S. Bae, D. E. Sok, D. H. Shin, K. H. Son, and H. Y. Park (2009) Characterization of an extracellular xylanase from Bacillus sp. HY-20, a bacterium in the gut of Apis mellifera. Kor. J. Microbiol. 45: 332-338.

Chatterjee, A., N. C. Das, S. Raha, R. Babbit, Q. Huang, D. Zaitlin, and I. B. Maiti (2010) Production of xylanase in transgenic tobacco for industrial use in bioenergy and biofuel applications. In Vitro Cell. Dev. Biol.-Plant 46: 198-209. crossref(new window)

Lee, J. H. and S. H. Choi (2006) Xylanase production by Bacillus sp. A-6 isolated from rice bran. J. Microbiol. Biotechnol. 16: 1856-1861.

Kim, M. J., S. J. Lim, and D. K. Kang (2008) Isolation of a Bacillus licheniformis DK42 producing celluloseand xylanase, and properties of the enzymes. J. Anim. Sci. & Technol. (Kor.) 50: 429-436. crossref(new window)

Sticklen, M. B. (2008) Plant genetic engineering forbiofuel production: towards affordable cellulosic ethanol. Nat. Rev. 9: 433-443. crossref(new window)

Hinchee, M., W. Rottmann, L. Mullinax, C. Zhang, S. Chang, M. Cunningham, L. Pearson, and N. Nehra (2009) Short-rotation woody crops for bioenergy and biofuels application. In Vitro Cell. Dev. Biol.-Plant 45: 619-629. crossref(new window)

Du Preez, J. C., B. van Driessel, and B. A. Prior (1989) D-xylose fermentation by Candida shehatae and Pichia stipitisat low dissolved oxygen levels in fed-batch cultures. Biotechnol. Lett. 11: 131-136. crossref(new window)

Siedenberg, D., S. R. Gerlach, K. Schugerl, M. L. F. Giuseppin, and J. Hunik (1998) Production of xylanase by Aspergillus awamori on synthetic medium in shake flask cultures. Process Biochem. 33: 429-433. crossref(new window)

Tenkanen, H., J. Plus, and K. Poutanen (1992) Two major xylanases of Trichoderma reesei. Enzyme Microb. Technol. 14: 566-574. crossref(new window)

Sunna, A. and G. Antranikian (1997) Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67. crossref(new window)

Kosugi, A., K. Murashima, and R. H. Doi (2001) Characterization of xylanolytic enzymes in Clostridium cellulovorans: expression of xylanase activity dependent on growth substrates. J. Bacteriol. 183: 7037-7043. crossref(new window)

Choi, J.-H. and D.-H. Bai (2010) Isolation and identification of alkalophilic microorganism producing xylanase. Food Engineering Progess 14: 263-270.

Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. crossref(new window)

Droffner, M. L. and N. Yamamoto (1985) Isolation of thermophilic mutants of Bacillus subtilis and Bacillus pumilusand transformation of the thermophilic trait to mesophilic strains. J. Gen. Microbiol. 131: 2789-2794.

Hill, J. E., J. C. F. Baiano, and A. C. Barnes (2009) Isolation of a novel strain of Bacillus pumilusfrom penaeid shrimp that is inhibitory against marine pathogens. J. Fish Dis. 32: 1007-1016. crossref(new window)

Samain, E., Ph. Debeire, and J. P. Touzel (1997) High level production of a cellulose-free xylanase in glucose-limited fed batch cultures of a thermophilic Bacillus strain. J. Biotechnol. 58: 71-78. crossref(new window)

Hoq, M. M., C. Hempel, and W. D. Deckwer (1994) Cellulasefree xylanase by Thermomyces lanuginosus RT9: Effect of agitation, aeration, and medium components on production. J. Biotenol. 37: 49-58.

Purkarthofer, H., M. Sinner, and W. Steiner (1993) Cellulase-free xylanase from Thermomyces lanuginosus: Optimization of production in submerged and solid-state culture. Enzyme Microb. Technol. 15: 677-682. crossref(new window)

Haltrich, D., M. Preiss, and W. Steiner (1993) Optimization of a culture medium for enzyme increased xylanase production by a wild strain of Schizophyllum commune. Enzyme Microb. Technol. 15: 854-860. crossref(new window)

Bailey, M. J., J. Buchert, and L. Viikari (1993) Effect of pH on production of xylanase by Trichoderma reesei on xylan- and cellulose-based media. Appl. Microbiol. Biotechnol. 40: 224-229.

Bertrand, J. L., R. Morosoli, F. Shareck, and D. Kluepfel (1989) Expression of the xylanase gene of Streptomyces lividans and production of the enzyme on natural substrates. Biotechnol. Bioeng. 33: 791-794. crossref(new window)

Leathers, T. D. (1986) Color variants of Aureobasidium pullulans overproduce xylanase with extremely highspecific activity. Appl. Environ. Microbiol. 52: 1026-1030.

Ratto, M., K. Poutanen, and L. Viikari (1992) Production of xylanolytic enzymes by an alkalitolerant Bacillus circulars strain. Appl. Microbiol. Biotechnol. 37: 470-473.

Bastawde, K. B., U. S. Puntambekar, and D. V. Gokhale (1994) Optimization of cellulosefree xylanase production by a novel yeast strain. J. Ind. Microbiol. 13: 220-224. crossref(new window)

Yoon, K.-H., S. J. Seol, H.-C. Cho, M.-S. Lee, J. H. Choi, and K. H. Cho (2002) Isolation and enzyme production of a xylanaseproducing strain, Bacillus sp. AMX-4. Kor. J. Microbiol. Biotechnol. 30: 123-128.