JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characteristics and Applications of Bioactive Peptides in Skin Care
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 26, Issue 6,  2011, pp.483-490
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2011.26.6.483
 Title & Authors
Characteristics and Applications of Bioactive Peptides in Skin Care
Moh, Sang-Hyun; Jung, Dai-Hyun; Kim, Hyoung-Shik; Cho, Moon-Jin; Seo, Hyo-Hyun; Kim, Sung-Jun;
  PDF(new window)
 Abstract
Bioactive peptides (BAP) showed excellent cosmetic activity than bio-materials such as caffeic acid (CA), gallic acid (GA), and nicotinic acid (NA). Caffeoyl tripeptide-1 (CT-1) is a BAP that is stabilized with Gly-His-Lys (GHK) tripeptide and CA by using Fmoc solid phase peptide synthesis. Digalloyl tetrapeptide-19 (DT-19) is stabilized by combining Lys-Glu-Cys-Gly with GA and nicotinoyl tripeptide-1 (NT-1) is synthesized by GHK and NA. According to experiments, CT-1 has an excellent anti-oxidant function even with a very small amount of 10 ppm CT-1. DT-19's tyrosinase inhibition activity has the better effect of about 28.57% in 0.01% and 33.33% in 0.005% of concentration and about 7.89% in 0.001% concentration than vitamin-C. In addition, NT-1 is safer than the NA. Almost BAPs like pal-KTTKS, acetyl hexapeptide, and copper tripeptide-1 have the anti-wrinkle effect while DT-19 and NT-1 are applicable for potential BAPs focused on the whitening effect. The three kinds of BAPs like CT-1, DT-19, and NT-1 consisting of amino acids are safe to the skin, and have more excellent stability than bio-materials which are found to be unstable and cause skin irritation. Due to the high biological activity of BAP in the field of skin care, its utilization will increase constantly.
 Keywords
Peptide;Bioactive Peptide (BAP);Anti-Oxidant;Cosmetic;Skin Care;
 Language
Korean
 Cited by
 References
1.
Mary, P. L. and A. L. Cole (2007) Cosmeceutical peptides. Dermatol. Ther. 20: 343-349. crossref(new window)

2.
Vlieghe, P., V. Lisowski, J. Martinez, and M. Khrestchatisky (2010) Synthetic therapeutic peptides: science and market. Drug Discovery Today 15: 41-56.

3.
Lee, S. K. (1997) Development of recombinant human growth hormone in yeast: efficacy evaluation and safety assessment. Proceedings of the Korean Society of Toxicology Conference. October. Korea.

4.
Zhang, L. and T. J. Falla (2009) Cosmeceuticals and peptides. Clinics in Dermatology 27: 485-494. crossref(new window)

5.
Fields, K., T. J. Falla, K. Rodan, and L. Bush (2009) Bioactive peptides: signaling the future. J. Cosmetic Dermatology 8: 8-13. crossref(new window)

6.
Samah, N. H. A. and C. M. Heard (2011) Topically applied KTTKS: a review. J. Cosmet. Sci. 33: 483-490. crossref(new window)

7.
Dellai, A., I. Maricic, V. Kumar, S. Arutyunyan, A. Bouraoui, and A. Nefzi (2010) Parallel synthesis and anti-inflammatory activity of cyclic peptides cyclosquamosin D and Met-cherimolacyclopeptide B and their analogs. Bio. Med. Chem. Lett. 20: 5653-5657. crossref(new window)

8.
Metaferia, B. B., M. Rittler, J. S. Gheeya, A. Lee, H. Hempel, A. Plaza, W. G. S. Stevenson, C. A. Bewley, and J. Khan (2010) Synthesis of novel cyclic NGR/RGD peptide analogs via on resin click chemistry. Bio. Med. Chem. Lett. 20: 7337-7340. crossref(new window)

9.
Richter, S., T. Ramenda, R. Bergmann, T. Kniess, J. Steinbach, J. Pietzsch, and F. Wuest (2010) Synthesis of neurotensin(8-13)-phosphopeptide heterodimers via click chemistry. Bio. Med. Chem. Lett. 20: 3306-3309. crossref(new window)

10.
Grillo, B., D. F. Rabanal, and E. Giralt (2011) Improved Fmoc based solid phase synthesis of homologous peptide fragments of human and mouse prion proteins. J. Peptide Science 17: 32-38. crossref(new window)

11.
Coin, I., M. Beyermann, and M. Bienert (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nature Protocols 2: 3247-3256. crossref(new window)

12.
Valerie, D., N. Pierrick, M. Jean, and L. Frederic (2009) Solventfree synthesis of peptides. Angewandte Chemie 121: 9482-9485. crossref(new window)

13.
Andrey I., L. Liran, M. Amram, A. C. Gregory, F. D. William, M. Mati, L. Binhua, and G. David (2010) Role of the conformational rigidity in the design of biomimetic antimicrobial compounds. Angewandte Chemie 49: 8460-8463.

14.
Hartmann, R. and H. Meisel (2007) Food-derived peptides with biological activity: from research to food applications. Cur. Opin. Bio. 18: 163-169. crossref(new window)

15.
Chiara, F., L. Luisa, P. Alessandro, and B. Luisa (2005) Bioactive Peptides from Libraries. Chemistry biology 12: 417-426. crossref(new window)

16.
Sato, A. K., M. Viswanathan, R. B. Kent, and C. R. Wood (2006) Therapeutic peptides: technological advances driving peptides into development. Current opinion in biotech. 17: 638-642. crossref(new window)

17.
Ioannis, S., F. Demosthenes, V. Katerina, G. T. Andreas, K. Valentinos and B. Evangelos (2010) Cyanobacterial cyclopeptides as lead compounds to novel targeted cancer drugs. Mar. Drugs 8: 629-657. crossref(new window)

18.
Ruiz, M. A., B. Clares, M. E. Morales, and V. Gallardo (2010) Evaluation of the anti-wrinkle efficacy of cosmetic formulations with an anti-aging peptide ($Argireline^{(R)}$). Ars. Pharm. 50: 168-176.

19.
Benedetto, A. V. (1998) Environment and skin aging. Clin. Derm. 16: 129-139. crossref(new window)

20.
Osborne, R., L. A. Mullins, and B. B. Jarrold (2009) Understanding metabolic pathways for skin anti-aging. J. Drugs Der. 8: 4-7.

21.
Amer, M. and M. Maged (2009) Cosmeceuticals versus pharmaceuticals. Clinics in dermatology 27: 428-430. crossref(new window)

22.
Bissett, D. L. (2009) Common cosmeceuticals. Clinics in dermatology 27: 435-445. crossref(new window)

23.
Foldvari, M., S. Attah-Poku, J. Hu, Q. Li, H. Hughes, L. A Babiuk, and S. Kruger (1998) Palmitoyl derivatives of interferon: potential for cutaneous delivery. J. Pharmaceutical Sciences 87: 1203-1208. crossref(new window)

24.
Robinson, L. R., N. C. Fitzgerald, D. G. Doughty, N. C. Dawes, C. A. Berge, and D. L. Bissett (2005) Topical palmitoyl pentapeptide provides improvement in photoaged human facial skin. J. Cosmetic science 27: 155-160. crossref(new window)

25.
Lee, H. J. (2011) The use of oligopeptides as cosmetics and pharmaceuticals. Foreign high-tech research business report, pp. 9. Korean Institute of Science and Technology Information Press, Seoul.

26.
Becker-Wegerich, P. M., L. Rauch, and T. Ruzicka (2002) Botulinum toxin A: successful decollete rejuvenation. Dermatologic Surgery 28: 168-171. crossref(new window)

27.
Goldsmith, J., L. Granera, and C. Wolfe (2009) Effects of argireline on EPSP amplitude at the crayfish neuromuscular junction. Pioneering Neuroscience 10: 11-14.

28.
Blanes, M., C. J. Clemente, G. Jodas, A. Gil, G. F. Ballester, B. Ponsati, L. Gutierrez, E. P. Paya, and A. F. Montiel (2002) A synthetic hexapeptide (Argireline) with antiwrinkle activity. Int. J. Cos. Sci. 24: 303-310. crossref(new window)

29.
Gutierrez, L. M., S. Viniegra, J. Rueda, A. V. Ferrer-Montiel, J. M. Canaves, and M. Montal (1997) A peptide that mimics the C-terminal sequence of SNAP-25 inhibits secretory vesicle docking in chromaffin cells. J. Bio. Chem. 272: 2634-2639. crossref(new window)

30.
Furstenau, A., G. Hazeltine, and M. Miller (2010) The effectiveness of argireline as a synthetic BoNT questioned, as examined in the neuromuscular junction of the procambarus clarkii. Pioneering Neuroscience 7: 7-10.

31.
Antonio, V. F., M. G. Luis, P. A. James, M. C. Jaume, G. Anabel, V. Salvador, A. B. Jennifer, A. Michael, and M. Mauricio (1998) The 26-mer peptide released from SNAP-25 cleavage by botulinum neurotoxin E inhibits vesicle docking. FEBS Lett. 435: 84-88. crossref(new window)

32.
Luis, M. G., M. C. Jaume, V. F. Antonio, A. R. Juan, M. Mauricio, and V. Salvador (1995) A peptide that mimics the carboxyterminal domain of SNAP-25 blocks Ca2+-dependent exocytosis in chromaffin cells. FEBS Lett. 372: 39-43. crossref(new window)

33.
Maquar, F. X., L. Pickartb, M. Laurentc, P. Gillerya, J. C. Monboissea, and J. P. Borela (1988) Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+. FEBS Lett. 238: 343-346. crossref(new window)

34.
Gorouhi, F. and H. I. Maibach (2009) Role of topical peptides in preventing or treating aged skin. J. Cosmetic Science 31: 327-345. crossref(new window)

35.
Wegrowski, Y., F. X. Maquart, and J. P. Borel (1992) Stimulation of sulfated glycosaminoglycan synthesis by the tripeptide-copper complex Glycyl-L-histidyl-L-lysine-Cu2+. Life Sciences 51: 1049-1056. crossref(new window)

36.
Pickart, L. (2008) The human tri-peptide GHK and tissue remodeling. J. Bio. Sci. 19: 969-988. crossref(new window)

37.
Lampe, J. W. and J. L. Chang (2007) Interindividual differences in phytochemical metabolism and disposition. Seminars in Cancer Biology 17: 347-353. crossref(new window)

38.
Yamamoto, I., N. Muto, K. I. Murakami, and J. I. Akiyama (1992) Collagen synthesis in human skin fibroblasts is stimulated by a stable form of ascorbate, 2-O-${\alpha}$-D-Glucopyranosyl-L-Ascorbic acid. J. Nutr. 122: 871-877.

39.
Chen, J. H. and C. T. Ho (1997) Antioxidant activities of caffeic acid and Its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 45: 2374-2378. crossref(new window)

40.
Krizkova, L., M. Nagy, J. Polonyi, J. Dobias, A. Belicova, D. Grancai, and J. Krajcovic (2000) Phenolic acids inhibit chloroplast mutagenesis in euglena gracilis. Mutat. Res. 469: 107-114. crossref(new window)

41.
Shahrzad, S., K. Aoyagi, A. Winter, A. Koyama, and I. Bitsch (2001) Research communication: pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. J. Nutrition 131: 1207-1210.

42.
Kang, N. J., K. W. Lee, B. J. Shin, S. K. Jung, M. K. Hwang, A. M. Bode, Y. S. Heo, H. J. Lee, and Z. Dong (2009) Caffeic acid, a phenolic phytochemical in coffee, directly inhibits fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis 30: 321-330.

43.
Jung, U. J., M. K. Lee, Y. B. Park, S. M. Jeon, and M. S. Choi (2006) Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. Pharm. Exp. Ther. 318: 476-483. crossref(new window)

44.
Ow, Y. Y. and I. Stupans (2003) Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes. Current Drug Metabolism 4: 241-248. crossref(new window)

45.
Kroes, B. H., A. J. J. Berg, H. C. Q. Ufford, H. Dijk, and R. P. Labadie (1992) Anti-inflammatory activity of gallic acid. Planta. Med. 58: 499-504. crossref(new window)

46.
Kubo, I., Q. X. Chen, and K. Nihei (2003) Molecular design of antibrowning agents: antioxidative tyrosinase inhibitors. Food Chemistry 81: 241-247. crossref(new window)

47.
Kubo, I., I. Kinst-Hori, Y. Kubo, Y. Yamagiwa, T. Kamikawa, and H. Haraguchi (2000) Molecular design of antibrowning agents. J. Agric. Food Chem. 48: 1393-1399. crossref(new window)

48.
Kim, Y. J. (2007) Antimelanogenic and antioxidant properties of gallic acid. Biol. Pharm. Bull. 30: 1052-1055. crossref(new window)

49.
Kim, S. H., C. D. Jun, K. H. Suk, B. J. Choi, H. J. Lim, S. J. Park, S. H. Lee, H. Y. Shin, D. K. Kim, and T. Y. Shin (2006) Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicological Sciences 91: 123-131. crossref(new window)

50.
Chen, L. G., W. L. Chang, C. J. Lee, and L. T. Lee (2009) Melanogenesis inhibition by gallotannins from chinese galls in B16 mouse melanoma cells. Biol. Pharm. Bull. 32: 1447-1452. crossref(new window)

51.
Gehring, W. (2004) Nicotinic acid/niacinamide and the skin. J. Cos. Der. 3: 88-93.

52.
Loren, P. (2002) Copper peptides for tissue regeneration. Speciality Chemicals 22: 29-31.

53.
Hakozaki, T., L. Minwalla, J. Zhuang, M. Chhoa, A. Matsubara, K. Miyamoto, A. Greatens, G. G. Hillebrand, D. L. Bissett, and R. E. Boissy (2002) The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Bri. J. Der. 147: 20-31.

54.
Nico, S., V. Jana, and P. Stan (2009) The hunt for natural skin whitening agents. Int. J. Mol. Sci. 10: 5326-5349. crossref(new window)

55.
Boonme, P., V. Junyaprasert, B. Varaporn, N. Suksawad, and S. Songkro (2009) Microemulsions and nanoemulsions: novel vehicles for whitening cosmeceuticals. J. Biomedical Nanotechnology 5: 373-383. crossref(new window)

56.
Ferruti, P. and R. Paoletti (1978) High polymers containing nicotinic acid, process for their preparation and their use. US Patent 4,067,876.

57.
Shen, B., D. M. Makley, and J. N. Johnston (2010) Umpolung' reactivity in semiaqueous amide and peptide synthesis. Nature 465: 1027-1032. crossref(new window)

58.
Youhei, S. and K. Yoshiaki (2006) Click peptides-chemical biology-oriented synthesis of alzheimer's disease-related amyloid ${\beta}$ peptide (A${\beta}$) analogues based on the o-acyl isopeptide method. Chem. Bio. Chem. 7: 1549-1557. crossref(new window)

59.
Han, S. Y. and Y. A. Kim (2004) Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 60: 2447-2467. crossref(new window)

60.
Grillo-Bosch, D., F. Rabanal, and E. Giralt (2011) Improved Fmoc based solid phase synthesis of homologous peptide fragments of human and mouse prion proteins. J. Peptide Science 17: 1075-2617.

61.
Sarika, N. and A. E. B. Heather (2010) Cyclic peptides as potential therapeutic agents for skin disorders. Peptide Science 94: 673-680. crossref(new window)

62.
Matsuzaki, K. (2009) Control of cell selectivity of antimicrobial peptides. BBA 1788: 1687-1692. crossref(new window)