Advanced SearchSearch Tips
Protein Analysis of Bacillus subtilis MORI 3K-85 with Reference to the Biosynthesis of 1-Deoxynojirimycin
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 26, Issue 6,  2011, pp.517-522
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2011.26.6.517
 Title & Authors
Protein Analysis of Bacillus subtilis MORI 3K-85 with Reference to the Biosynthesis of 1-Deoxynojirimycin
Cho, Yong-Seok; Kang, Kyung-Don; Park, Young-Shik; Lee, Jae-Yeon; Kim, Hyun-Su; Yuk, Won-Jeong; Kamita, Shizuo George; Hwang, Kyo-Yeol; Seong, Su-Il;
  PDF(new window)
In our previous study, we isolated and characterized a 1-deoxynojirimycin (DNJ)-producing bacterium, Bacillus subtilis MORI, from chungkookjang, a Korean traditional food. B. subtilis MORI was subjected to -irradiation and the resulting bacteria were screened for increased DNJ production. A mutant was identified that produced 7.6 times more DNJ and named B. subtilis MORI 3K-85. In this study, the protein profiles of both strains were compared by one-dimensional and two-dimensional gel electrophoresis (1-DE and 2-DE, respectively) under both native and denaturing conditions. The 1-DE native-PAGE and 1-DE SDS-PAGE analyses identified 5 and 7 bands, respectively, that were found at higher concentrations in B. subtilis MORI 3K-85 than in B. subtilis MORI. Similarly, 2-DE analyses identified 20 protein spots which were found at higher concentrations in B. subtilis MORI 3K-85. The peptide mass profiles of these 20 proteins were analyzed by MALDI-TOF and compared with peptide sequences of B. subtilis and B. amyloliquefaciens in the MASCOT database. This screening suggested that three dehydrogenases, an aldolase, a synthetase, an isomerase, a reductase, and a peroxidase are elevated in B. subtilis MORI 3K-85. Based on this data, one or more of the elevated 8 enzymes might be related to the DNJ biosynthetic pathway.
Bacillus subtilis;two-dimensional gelelectrophoresis;1-deoxynojirimycin;-glucosidase inhibitor;proteome;
 Cited by
Asano, N., R. J. Nash, R. J. Molyneux, and G. W. J. Fleet (2000) Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron: Asymmetry 53: 1645-1680.

Watson, A. A., G. W. G. Fleet, N. Asano, R. J Molyneux, and R. J. Nash (2001) Polyhydroxylated alkaloids-natural occurrence and therapeutic applications. Phytochemistry 56: 265-295. crossref(new window)

Schedel, M. (2008) Regioselective Oxidation of Aminosorbitol with Gluconobacter oxydans, Key Reaction in the Industrial 1-Deoxynojirimycin Synthesis, pp. 296-307. In: H.-J. Rehm and G. Reed (eds.), Biotechnology: Biotransformations II, Volume 8b, 2nd ed. Wiley-VCH Verlag GmbH, Weinheim, Germany.

Asano, N., K. Oseki, E. Tomioka, H. Kizu, and K. Matsui (1994) N-containing sugars from Morus alba and their glycosidase inhibitory activities. Carbohyr. Res. 259: 243-255. crossref(new window)

Yoshikuni, Y. (1988) Inhibition of intestinal ${\alpha}$-glycosidase activity and postprandial hyperglycemia by moranoline and its N-alkyl derivatives. Agric. Biol. Chem. 52: 121-128. crossref(new window)

Gruters, R. A., J. J. Neefjes, M. Tersmette, R. E. Y. D. Goede, A. Tulp, H. G. Huisman, F. Miedema, and H. L. Ploegh (1987) Interference with HIV-induced syncytium formation and viral infectivity by inhibitors of trimming glucosidase. Nature 330: 74-77. crossref(new window)

Fleet, G. W. J., A. Karpas, R. A. Dwek, L. E. Fellows, A. S. Tyms, S. Petursson, S. K. Namgoong, N. G. Ramsden, P. W. Smith, J. C. Son, F. Wilson, D. R. Witty, G. S. Jacob, and T. W. Rademacher (1988) Inhibition of HIV replication by amino-sugar derivatives. FEBS Lett. 237: 128-132. crossref(new window)

Karpas, A., G. W. J. Fleet, R. A. Dwek, S. Petursson, S. K. Namgoong, N. G. Ramsden, G. S. Jacob, and T. W. Rademacher (1988) Aminosugar derivatives as potential anti-human immunodeficiency virus agents. Proc. Natl. Acad. Sic. USA 85: 9229-9233. crossref(new window)

Mehta, A., N. Zitzmann, P. M. Rudd, T. M. Block, and R. A. Dwek (1998) ${\alpha}$-Glucosidase inhibitors as potential broad anti-viral agents. FEBS Lett. 430: 17-22. crossref(new window)

Dwek, R. A., T. D. Butters, F. M. Platt, and N. Zitzmann (2002) Targeting glycosylation as a therapeutic approach. Nat. Rev. Drug. Discov. 1: 65-75. crossref(new window)

Jacob, J. R., K. Mansfield, J. E. You, B. C. Tennant, and Y. H. Kim (2007) Natural iminosugar derivatives of 1-deoxynojirimycin inhibit glycosylation of hepatitis viral envelope proteins. J. Microbiol. 45: 431-440.

Asano, N., T. Yamashita, K. Yasuda, K. Ikeda, H. Kizu, Y. Kameda, A. Kato, R. J. Nash, H. S. Lee, and K. S. Ryu (2001) Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). J. Agric. Food Chem. 49: 4208-4213. crossref(new window)

Afarinkia, K. and A. Bahar (2005) Recent advances in the chemistry of azapyranose sugars. Tetrahedron: Asymmetry 16: 1239-1287. crossref(new window)

Cho, Y. S., Y. S. Park, J. Y. Lee, K.-D. Kang, K. Kim, K. Y. Hwang, and S. I. Seong (2008) Hypoglycemic effect of culture broth of Bacillus subtilis S10 producing 1-deoxynojirimycin. J. Korean Soc. Food Sci. Nutr. 37: 1401-1407. crossref(new window)

Stein, D. C., L. K. Kopec, R. E. Yasbin, and F. E. Young (1984) Characterization of Bacillus subtilis DSM704 and its production of 1-deoxynojirimycin. Appl. Environ. Microbiol. 48: 280-284.

Ezure, Y., S. Maruo, K. Miyazaki, and M. Kawamata (1985) Moranoline (1-deoxynojirimycin) fermentation and its improvement. Agric. Biol. Chem. 49: 1119-1125. crossref(new window)

Hardick, D. J., D. W. Hutchinson, S. J. Trew, and E. M. H. Wellington (1991) The biosynthesis of deoxynojrimycin and deoxymannonojirimycin in Streptomyces subrutilus. J. Chem. Soc. Chem. Commun. 10: 729-730.

Kim, H. S., J. Y. Lee, K. Y. Hwang, Y. S. Cho, Y. S. Park, K.-D. Kang, and S. I. Seong (2011) Isolation and identification of a Bacillus sp. producing ${\alpha}$-glucosidase inhibitor 1-deoxynojirimycin. Korean J. Microbiol. Biotechnol. 39: 49-55.

Kang, K.-D., Y. S. Cho, J. H. Song, Y. S. Park, J. Y. Lee, K. Y. Hwang, S. K. Rhee, J. H. Chung, O. Kwon, and S. I. Seong (2011) Identification of the gene involved in 1-deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85. J. Microbiol. 49: 431-440. crossref(new window)

Cho, Y. S. (2011) Studies on 1-deoxynojirimycin biosynthesis genes in Bacillus subtilis MORI. Ph.D. Thesis. University of Suwon, Hwaseong-si, Gyeonggi-do, Korea.

Bollag, D. M., M. D. Rozycki, and S. J. Edelstein (1996) Protein Methods: Gel Electrophoresis Under Denaturing Conditions and Gel Electrophoresis Under Nondenaturing Conditions. 2nd ed., pp. 107-172. Wiley-Liss Inc., NY, USA.

Berkelman, T. and T. Stenstelt (2002) 2-D Electrophoresis Using Immobilized pH Gradie-nts, Principles and Methods. 2nd ed., pp. 17-93. Amersham Biosciences, Uppsala, Sweden.

Hardick, D. J. and D. W. Hutchinson (1993) The biosynthesis of 1-deoxynojirimycin in Bacillus subtilis var niger. Tetrahedron 49: 6707-6716. crossref(new window)

Hardick, D. J., D. W. Hutchinson, S. J. Trew, and E. M. H. Wellington (1992) Glucose is a precursor of 1-deoxynojirimycin and 1-deoxymannonojirimycin in Streptomyces subrutilus. Tetrahedron 48: 6285-6296. crossref(new window)

Shibano, M., Y. Fujimoto, K. Kushino, G. Kusano, and K. Baba (2004) Biosynthesis of 1-deoxynojirimycin in Commelina communis: a difference between the microorganisms and plants. Phytochemstry 65: 2661-2665. crossref(new window)

Clark, L. and N. Horenstein (2010) Biosynthesis of Azasugars. First Southeast Enzyme Conference. April 10. Atlanta, GA, USA.