Advanced SearchSearch Tips
Characteristics of Dissimilatory Arsenate-reducing Bacteria
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 27, Issue 2,  2012, pp.75-85
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2012.27.2.075
 Title & Authors
Characteristics of Dissimilatory Arsenate-reducing Bacteria
Chang, Young-Cheol; Takamizawa, Kazuhiro; Cho, Hoon; Kikuchi, Shintaro;
  PDF(new window)
Although, microbial arsenic mobilization by dissimilatory arsenate-reducing bacteria (DARB) and the practical use to the removal technology of arsenic from contaminated soil are expected, most previous research mainly has been focused on the geochemical circulation of arsenic. Therefore, in this review we summarized the previously reported DARB to grasp the characteristic for bioremediation of arsenic. Evidence of microbial growth on arsenate is presented based on isolate analyses, after which a summary of the physiology of the following arsenate-respiring bacteria is provided: Chrysiogenes arsenatis strain BAL-, Sulfurospirillum barnesii, Desulfotomaculum strain Ben-RB, Desulfotomaculum auripigmentum strains OREX-4, GFAJ-1, Bacillus sp., Desulfitobacterium hafniense DCB-, strain SES-3, Citrobacter sp. (TSA-1 and NC-1), Sulfurospirillum arsenophilum sp. nov., Shewanella sp., Chrysiogenes arsenatis BAL-, Deferribacter desulfuricans. Among the DARB, Citrobacter sp. NC-1 is superior to other dissimilatory arsenate-reducing bacteria with respect to arsenate reduction, particularly at high concentrations as high as 60 mM. A gram-negative anaerobic bacterium, Citrobacter sp. NC-1, which was isolated from arsenic contaminated soil, can grow on glucose as an electron donor and arsenate as an electron acceptor. Strain NC-1 rapidly reduced arsenate at 5 mM to arsenite with concomitant cell growth, indicating that arsenate can act as the terminal electron acceptor for anaerobic respiration (dissimilatory arsenate reduction). To characterize the reductase systems in strain NC-1, arsenate and nitrate reduction activities were investigated with washed-cell suspensions and crude cell extracts from cells grown on arsenate or nitrate. These reductase activities were induced individually by the two electron acceptors. Tungstate, which is a typical inhibitory antagonist of molybdenum containing dissimilatory reductases, strongly inhibited the reduction of arsenate and nitrate in anaerobic growth cultures. These results suggest that strain NC-1 catalyzes the reduction of arsenate and nitrate by distinct terminal reductases containing a molybdenum cofactor. This may be advantageous during bioremediation processes where both contaminants are present. Moreover, a brief explanation of arsenic extraction from a model soil artificially contaminated with As (V) using a novel DARB (Citrobacter sp. NC-1) is given in this article. We conclude with a discussion of the importance of microbial arsenate reduction in the environment. The successful application and use of DARB should facilitate the effective bioremediation of arsenic contaminated sites.
Arsenate;Arsenic;Dissimilatory arsenate reducing bacteria;Arsenic extraction;Arsenate-reducing bacterium;
 Cited by
Pontius F., K. G, Brown, and C. J. Chen (1994) Health implications of arsenic in drinking water. J. Am. Water Works Assoc. 86: 52-63.

Alam, M. G. M., S. Tokunaga, and T. Maekawa (2001) Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate. Chemosphere 43: 1035-1041. crossref(new window)

Macy, J. M., K. Nunan, K. D. Hagen, D. R. Dixon, P. J. Harbour, M. Cahill, and L. I. Sly (1996) Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int. J. Syst. Bacteriol. 46: 1153-1157. crossref(new window)

Gates, A. J., R. O. Hughes, S. R. Sharp, P. D. Millington, A. Nilavongse, J. A. Cole, E. R. Leach, B. Jepson, D. J. Richardson, and C. S. Butler (2003) Properties of the periplasmic nitrate reductases from Paracoccus pantotrophus and Escherichia coli after growth in tungsten supplemented media. FEMS Microbiol. Lett. 220: 261-269. crossref(new window)

Oremland, R. S. and J. F. Stolz (2003) The ecology of arsenic. Science. 300: 939-944. crossref(new window)

Ahmann, D., A. L. Roberts, L. R. Krumholtz, and F. M. M. Morel (1994) Microbe grows by reducing arsenic. Nature. 371: 750-751. crossref(new window)

Rittle, K. A., J. I. Drever, and P. J. S. Colbeerg (1995) Precipitation of arsenic during sulfate reduction. Geomicrobiol. J. 13: 1-12. crossref(new window)

Laverman, A. M., J. S. Blum, J. K. Schaefer, E. J. P. Phillips, D. R. Lovley, and R. S. Oremland (1995) Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol. 61: 3556-3561.

Newman, D. K., E. K. Kennedy, J. D. Coates, D. Ahmann, D. J. Ellis, and D. R. Morel (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch. Microbiol. 168: 380-388. crossref(new window)

Oremland, R. S., J. S. Blum, C. W. Culbertson, P. T. Visscher, L. G. Miller, P. Dowdle, and F. E. Strohmaier (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol. 60: 3011-3019.

Liu, A., E. Garcia-Doninguez, E. D. Rhine, and L. Y. Young (2004) A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol. Ecol. 48: 323-332. crossref(new window)

Manning, B. A. and S. Goldberg (1997) Arsenic (III) and arsenic (V) adsorption on three California soils. Soil Sci. 162: 886-895. crossref(new window)

Newman, D. K., T. J. Beveridge, and F. M. M. Morel (1997) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Appl. Environ. Microbiol. 63: 2022-2028.

Kraft, T. and J. M. Macy (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur. J. Biochem. 255: 647-653. crossref(new window)

Chauret, C. and R. Knowles (1991) Effect of tungsten on nitrate and nitrite reductases in Azospirillum brasilense Sp7. Can. J. Microbiol. 37: 744-750. crossref(new window)

Kashiwa, M., S. Nishimoto, K. Takahashi, M. Ike, and M. Fujita (2000) Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp. SF-1. J. Biosci. Bioeng. 89: 528-533. crossref(new window)

Ahmann, D., L. R. Krumholz, H. F. Hemond, D. R. Lovley, and F. M. M. Morel (1997) Microbial mobilization of arsenic from sediments of the Aberjona watershed. Environ. Sci. Technol. 31: 2923-2930. crossref(new window)

Herbel, M. J., J. S. Blum, S. E. Hoeft, S. M. Cohen, L. L. Arnold, J. Lisak, J. F. Stolz, and R. S. Oremland (2002) Dissimilatory arsenate reductase activity and arsenate-respiring bacteria in bovine rumen fluid, hamster feces, and the termite hindgut. FEMS Microbiol. Ecol. 41: 59-67. crossref(new window)

Yamamura, S., N. Yamamoto, M. Ike, and M. Fujita (2005) Arsenic extraction from solid phase using a dissimilatory arsenate-reducing bacterium. J. Biosci. Bioeng. 100: 219-222. crossref(new window)

Gihring, T. M. and J. F. Banfield (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol. Lett. 204: 335-340. crossref(new window)

Takai, K., H. Kobayashi, K. H. Nealson, and K. Horikoshi (2003) Deferribacter desulfuricans sp. nov., a novel sulfer-, nitrate-and arsenate-reducing thermophile isolated from a deepsea hydrothermal vent. Int. J. Syst. Evol. Microbiol. 53: 839-846. crossref(new window)

Blum, J. S., A. B. Bindi, J. Buzzelli, J. F. Stolz, and R. S. Oremland (1998) Bacillus arsenicoselenatis, sp. nov., Bacillus selenitireducens, sp.nov.: two haloalkaliphiles from Mono lake, California that respire oxyanions of selenium and arsenic. Arch. Microbiol. 171: 19-30. crossref(new window)

Afkar, E., J. Lisak, C. Saltikov, P. Basu, R. S. Oremland, and J. F. Stolz (2003) The respiratory arsenate reductase Bacillus selenitireducens strain MLAS10. FEMS Microbiol. Lett. 226: 107-112. crossref(new window)

Santini, J. M., J. F. Stolz, and J. M. Macy (2002) Isolation of a new arsenate-respiring bacterium-physiological and phylogenetic studies. Geomicrobiol. J. 19: 41-52. crossref(new window)

Fujita, M., M. Ike, S. Nishimoto, K. Takahashi, and M. Kashiwa (1997) Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. J. Ferment. Bioeng. 83: 517-522. crossref(new window)

Yamamura, S., M. Ike, and M. Fujita (2003) Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. strain SF-1. J. Biosci. Bioeng. 96: 454-460. crossref(new window)

Niggemyer, A., S. Spring, E. Stackebrandt, and R. F. Rosenzweig (2001) Isolation and characterization of a novel As (V)-reducing bacterium: implication for arsenic mobilization and the genus Desulfitobacterium. Appl. Environ. Microbiol. 67: 5568-5580. crossref(new window)

Bouchard, B., R. Beaudet, R. Villemur, G. Mcsween, F. Lepine, and J. G. Bisaillon (1996) Isolation and characterization of Desulfitobacterium frapperi sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int. J. Syst. Bacteriol. 46: 1010-1015. crossref(new window)

Christiansen, N. and B. K. Ahring (1996) Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium. Int. J. Syst. Bacteriol. 46: 442-448. crossref(new window)

Stackebrandt, E., P. Schumann, E. Schuler, and H. Hippe (2003) Reclassification of Desulfotomaculum auripigmentum as Desulfosporosinus auripigmenti corrig., comb. nov. Int. J. Syst. Evol. Microbiol. 53: 1439-1443. crossref(new window)

Chang, Y. C., A. Nawata, K. Jung, and S. Kikuchi, Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil. J. Ind. Microbiol. Biotechnol. 39: 37-44 (2012). crossref(new window)

Saltikov, C. W., A. Cifuentes, K. Venkateswaran, and D. K. Newman (2003) The ars detoxification system is advantageous but not required for As (V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl. Environ. Microbiol. 69: 2800-2809. crossref(new window)

Felisa,W. S., J. S. Blum, T. R. Kulp, G. W. Gordon, S. E. Hoeft, J. Pett-Ridge, J. F. Stolz, S. M. Webb, P. K. Weber, P. C. W. Davies, A. D. Anbar, and R. S. Oremland (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science. 332, 1163-1166. crossref(new window)

Hoeft, S. E., T. R. Kulp, J. F. Stolz, J. T. Hollibaugh, and R. S. Oremland (2004) Dissimilatory arsenate reduction with sulfide as electron donor: experiments with Mono lake water and isolation of strain MLMS-1, a chemoautotorophic arsenate respirer. Appl. Environ. Microbiol. 70: 2741-2747. crossref(new window)

Macy, J. M., J. M. Santini, B. V. Pauling, A. H. O'Neill, and L. I. Sly (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch. Microbiol. 173: 49-57. crossref(new window)

Stolz, J. F., D. J. Ellis, J. S. Blum, D. Ahmann, D. R. Lovley, and R. S. Oremland (1999) Sulfurosirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the ${\varepsilon}$ proteobacteria. Int. J. Syst. Bacteriol. 49: 1177-1180. crossref(new window)

Oremland, R. S., J. S. Blum, A. B. Bindi, P. R. Dowdle, M. Herbel, and J. F. Stolz (1999) Simultaneous reduction of nitrate and selenate by cell suspensions of selenium respiring bacteria. Appl. Environ. Microbiol. 65: 4385-4392.

Zobrist, J., P. R. Dowdle, J. A. Davis, and R. S. Oremland (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ. Sci. Technol. 34: 4747-4753. crossref(new window)

Bagla, P. and J. Kaiser (1996) India's spreading health crisis draws global arsenic experts. Science. 274: 174-175. crossref(new window)

Langner, H. W. and W. P. Inskeep (2000) Microbial reduction of arsenate in the presence of ferrihydrite. Environ. Sci. Technol. 34: 3131-3136. crossref(new window)

Prins, R. A., W. Cline-Theil, A. Malestein, and G. H. M. Counotte (1980) Inhibition of nitrate reduction in some rumen bacteria by tungstate. Appl. Environ. Microbiol. 40: 163-165.

Dowdle, P. R., A. M. Laverman, and R. S. Oremland (1996) Bacterial dissimilatory reduction of arsenate (V) to arsenic (III) in anoxic sediments. Appl. Environ. Microbiol. 62: 1664-1669.

Lovley, D. R. and J. D. Coates (1997) Bioremediation of metal contamination. Curr. Opin. Biotechnol. 8: 285-289. crossref(new window)