Advanced SearchSearch Tips
Production of Lactic Acid by Lactic Acid Bacteria Isolated from Shellfish
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 30, Issue 4,  2015, pp.161-165
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2015.30.4.161
 Title & Authors
Production of Lactic Acid by Lactic Acid Bacteria Isolated from Shellfish
Kang, Chang-Ho; Jung, Ho Geon; Koo, Ja-Ryong; So, Jae-Seong;
  PDF(new window)
Lactic acid and its derivatives are widely used in the food, pharmaceutical, and cosmetic industries. It is also a major raw material for the production of poly-lactic acid (PLA), a biodegradable and environmentally friendly polymer and a possible alternative to synthetic plastics derived from petroleum. For PLA production by new strains of lactic acid bacteria (LAB), we screened LAB isolates from shellfish. A total of 51 LAB were isolated from 7 types of shellfishes. Lactic acid production of individual isolates was examined using high-performance liquid chromatography using a Chiralpak MA column and an ultraviolet detector. Lactobacillus plantarum T-3 was selected as the most stress-resistant strain, with minimal inhibition concentrations of 1.2 M NaCl, 15% ethanol, and 0.0020% hydrogen peroxide. In a 1 L fermentation experiment, -lactic acid production of 19.91 g/L fermentation broth was achieved after 9 h cultivation, whereas the maximum production of total lactic acid was 41.37 g/L at 24 h.
Lactic acid bacteria;Poly-lactic acid;Isolation;Fermentation;
 Cited by
Ozeki, E. (1996) Characteristics of poly (L-lactide) as biodegradable plastics. Shimadzu Rev. 53: 1-8.

Anonymous. (1999) Resins report. pp.72-80. In: Modern Plastics, McGraw-Hill Co, NY, USA.

Datta, R., and M. Henry (2006) Lactic acid: recent advances in products, processes and technologies - A review. J. Chem. Technol. Biotechnol. 81: 1119-1129. crossref(new window)

Anuradha, R., A. K. Suresh, and K. V. Venkatesh (1999) Simultaneous saccharification and fermentation of starch to lactic acid. Process. Biochem. 35: 367-375. crossref(new window)

Vishnu, C., G. Seenayya, and G. Reddy (2000) Direct conversion of starch to L (+) lactic acid by amylase producing Lactobacillus amylophilus GV6. Bioprocess. Biosyst. Eng. 23: 155-158. crossref(new window)

Rojan, P. J., K. M. Nampoothiri, A. S. Nair, and A. Pandey (2005) L(+)-lactic acid production using Lactobacillus casei in solid-state fermentation. Biotechnol. Lett. 27: 1685-1688. crossref(new window)

Rojan, P. J., G. S. Anisha, K. M. Nampoothiri, and A. Pandey (2009) Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 27: 145-152. crossref(new window)

Gerhardt, P., R. G. E. Murray, W. A. Wood, and N. R. Krieg (1994) Methods for general and Molecular Bacteriology. pp. 31-32. American Society for Microbiology, Washington DC, USA.

Cappuccino, J. G. and N. Sherman (1992) Biochemical activities of microorganisms. In: Microbiology, A Laboratory Manual. 2nd ed., pp. 125. The Benjamin Cummings Publishing Company, San Francisco, CA, USA.

Ruoff, K. L. (1993) The genus Streptococcus-medical. In: The Prokaryotes. 2nd ed., pp. 1450. Springer, New York, NY, USA.

Ghanbari, M., M. Jami, K. J. Domig, and W. Kneifel (2013) Seafood biopreservation by lactic acid bacteria - A review. LWT-Food Sci. Technol. 54: 315-324. crossref(new window)

Sobrun, Y., A. Bhaw-Luximon, D. Jhurry, and D. Puchooa (2012) Isolation of lactic acid bacteria from sugar cane juice and production of lactic acid from selected improved strains. Adv. Biosci. Biotechnol. 3: 398-407. crossref(new window)

Tannock, G. W. (1988) The normal microflora: new concepts in health promotion. Microbiol. Sci. 5: 4-8.

Nikoskelainen, S., A. Ouwehand, G. Bylund, S. Salminen, and E. M. Lilius (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol. 15: 443-452. crossref(new window)

Stortz, G. and R. Hengge-Aronis (2000) Bacterial Stress Responses. pp. 485. American Society for Microbiology Press, Washington DC, USA.

Mergeay, M. (2000) Bacteria adapted to industrial biotopes: Metalresistant ralstonia. pp.403-414. In: G. Storz, and R. Hengge-Aronis (eds.). Bacterial stress responses. American Society for Microbiology Press, Washington DC, USA.

Hofvendahl, K. and B. Hahn-Hagerdal (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26: 87-107. crossref(new window)

Vescovo, M., S. Torriani, F. Dellaglio, and V. Bottazzi (1993) Basic characteristics, ecology and application of Lactobacillus plantarum: A review. Ann. Microbiol. Enzymol. 43: 261-284.

Daeschel, M. A. and I. F. Nes (1995) Lactobacillus plantarum: physiology, genetics, and applications in foods. In: Y. H. Hui, and G. G. Khachatourians (eds.). Food Biotechnology: Microorganisms. VCH Publishers, Inc., New York, NY, USA.

McDonald, L. C., H. P. Fleming, and H. M. Hassan (1990) Acid Tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol. 56: 2120-2124.

Takaaki, T., M. Hoshina, S. Tanabe, K. Sakai, S. Ohtsubo, and M. Taniguchi (2006) Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour. Technol. 92: 211-217.

Buchta, K. (1983) Lactic acid. In: H. J. Rehm, and G. Reed (eds.). Biotechnology. VCH Publishers, Inc., New York, NY, USA.

Yun, J. S., Y. J. Wee, and H. W. Ryu (2003) Production of optically pure L(+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1. Enzyme Microb. Technol. 33: 416-423. crossref(new window)

Goncalves, L. M. D., A. N. R. B. Xavier, J. S. Almanda, and M. J. T. Corronodo (1991) Concomitant substrate and product inhibition kinetics in lactic acid production. Enzyme Microb. Technol. 13: 314-319. crossref(new window)