JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Simultaneous Enantiomer Separation of α-Amino Acids and Their Esters as Fluorenylmethoxycarbonyl Derivatives under UV and Fluorescence Detection by High Performance Liquid Chromatography
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 30, Issue 4,  2015, pp.197-201
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2015.30.4.197
 Title & Authors
Simultaneous Enantiomer Separation of α-Amino Acids and Their Esters as Fluorenylmethoxycarbonyl Derivatives under UV and Fluorescence Detection by High Performance Liquid Chromatography
Islam, Md. Fokhrul; Lee, Wonjae;
  PDF(new window)
 Abstract
Liquid chromatographic enantiomer separation of -amino acids and their methyl and ethyl esters as fluorenylmethoxycarbonyl (FMOC) derivatives was performed using a recently developed chiral column (Chiralpak IE) based on polysaccharide derivative under simultaneous UV detection and fluorescence detection. The degree of enantiomer separation of -amino acid esters as FMOC derivatives is generally higher than that of the corresponding -amino acids. Especially, -amino acid methyl esters showed the greatest enantioseparation. As this method developed in this study can be applied to determine the chemical and optical purity of -amino acids and esters, it is expected to be quite useful for their chiral separation using Chiralpak IE.
 Keywords
Amino acid derivative;Chiral column;Enantiomer separation;Fluorenylmethoxycarbonyl derivative;
 Language
Korean
 Cited by
 References
1.
Yashima, E. (2001) Polysaccharide-based chiral stationary phases for high-performance liquid chromatographic enantioseparation, J. Chromatogr. A 906: 105-125. crossref(new window)

2.
Chankvetadze, B. (2012) Recent developments on polysaccharidebased chiral stationary phases for liquid-phase separation of enantiomers, J. Chromatogr. A 1269: 26-51. crossref(new window)

3.
Application Guide for Chiral HPLC selection, 4th ed., (2008) Daicel Chemical Industries, Ltd. Japan.

4.
Zhang, T., C. Kientzy, P. Franco, A. Ohnishi, Y. Kagamihara, and H. Kurosawa (2005) Solvent versatility of immobilized 3,5-dimethylphenylcarbamate of amylose in enantiomeric separations by HPLC. J. Chromatogr. A 1075: 65-75. crossref(new window)

5.
Zhang, T., D. Nguyen, P. Franco, T. Murakami, A. Ohnishi, and H. Kurosawa (2006) Cellulose 3,5-dimethylphenylcarbamate immobilized on silica: A new chiral stationary phase for the analysis of enantiomers. Anal. Chim. Acta 557: 221-228. crossref(new window)

6.
Jin, J. Y., W. Lee, J. H. Park, and J. J. Ryoo (2007) Liquid chromatographic enantiomer separation of N-phthaloyl protected $\alpha$- amino acids on coated and immobilized chiral stationary phases derived from polysaccharide derivatives. J. Liq. Chrom. & Rel. Tech. 30: 1-9. crossref(new window)

7.
Jin, J. Y., W. Lee, and C. -S. Baek (2008) Enantiomer resolution of non-steroidal anti-inflammatory drugs on chiral stationary phases derived from polysaccharide derivatives. Chin. J. Anal. Chem. 36: 1207-1211. crossref(new window)

8.
Jin, J. Y., S. K, Bae, and W. Lee (2009) Comparative studies between covalently immobilized and coated chiral stationary phases based on polysaccharide derivatives for enantiomer separation of N-protected α-amino acids and their ester derivatives. Chirality 21: 871-877. crossref(new window)

9.
Huang, H., W. J. Xu, J. Y. Jin, J. H. Hong, H. J. Shin and W. Lee (2012) A convenient method for the enantiomeric separation of α- amino acid esters as benzophenone imine Schiff base derivatives. Arch. Pharm. Res. 35: 1015-1019. crossref(new window)

10.
Zhang, T., P. Franco, D. Nguyen, R. Hamasaki, S. Miyamoto, A. Ohnishi, and T. Murakami (2012) Complementary enantiorecognition patterns and specific method optimization aspects on immobilized polysaccharide-derived chiral stationary phases. J. Chromatogr. A 1269: 178-188. crossref(new window)

11.
DaSilva, J. O., B. Coes, L. Frey, I. Mergelsberg, R. McClain, L. Nogle, and C. J. Welch (2014) Evaluation of non-conventional polar modifiers on immobilized chiral stationary phases for improved resolution of enantiomers by supercritical fluid chromatography. J. Chromatogr. A 1328: 98-103. crossref(new window)

12.
Lee, J., J. T. Lee, W. L. Watts, J. Barendt, T. Q. Yan, Y. Huang, F. Riley, M. Hardink, J. Bradow, and P. Franco (2014) On the method development of immobilized polysaccharide chiral stationary phases in supercritical fluid chromatography using an extended range of modifiers. J. Chromatogr. A 1374: 238-246. crossref(new window)

13.
Burgess, K., (2000) Solid-Phase Organic Synthesis. 3rd ed., John Wiley & Sons, NY, USA.

14.
Greene, T. W., and P. G. M. Wuts, (1999) Protective Groups in Organic Synthesis. 3rd ed., John Wiley & Sons, NY, USA.

15.
Lee, K.-A., S. Yeo, K. H. Kim, W. Lee, and J. S. Kang (2008) Enantioseparation of N-fluorenylmethoxycarbonyl α-amino acids on polysaccharide-derived chiral stationary phases by reverse mode liquid chromatography. J. Pharm. Biomed. Anal. 46: 914-919. crossref(new window)

16.
Jin, J. Y., W. Lee, J. H. Park, and J. J. Ryoo (2006) Covalently bonded and coated chiral stationary phases derived from polysaccharide derivatives for enantiomer separation of N-fluorenylmethoxycarbonyl $\alpha$-amino acids with fluorescence detection. J. Liq. Chrom. & Rel. Tech. 29: 1793-1801. crossref(new window)

17.
Li, Y. H., C.-S. Baek, B. W. Jo, and W. Lee (2005) Direct chiral separation of N-fluorenylmethoxycarbonyl α-amino acids by HPLC for determination of enantiomeric purity, Bull. Kor. Chem. Soc. 26: 998-1000. crossref(new window)

18.
Bodansky, M. and A. Bodansky (1984) The Practice of Peptide Synthesis. Springer, NY, USA.