JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Recent Advances in MALDI-MS Based Quantitative Targeted Glycan Analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 30, Issue 5,  2015, pp.230-238
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2015.30.5.230
 Title & Authors
Recent Advances in MALDI-MS Based Quantitative Targeted Glycan Analysis
Kim, Kyoung-Jin; Kim, Yoon-Woo; Hwang, Cheol-Hwan; Park, Han-Kyu; Jeong, Jae Hyun; Kim, Yun-Gon;
  PDF(new window)
 Abstract
Abnormal glycosylation can significantly affect the intrinsic functions (i.e., stability and solubility) of proteins and the extrinsic protein interactions with other biomolecules. For example, recombinant glycoprotein therapeutics needs proper glycosylation for optimal drug efficacy. Therefore, there has been a strong demand for rapid, sensitive and high-through-put glycomics tools for real-time monitoring and fast validation of the biotherapeutics glycosylation. Although liquid chromatography tandem mass spectrometry (LC-MS/MS) is one of the most powerful tools for the characterization of glycan structures, it is generally time consuming and requires highly skilled personnel to collect the data and analyze the results. Recently, as an alternative method, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS), which is a fast, robust and easy-to-use instrumentation, has been used for quantitative glycomics with various chemical derivatization techniques. In this review, we highlight the recent advances in MALDI-MS based quantitative glycan analysis according to the chemical derivatization strategies. Moreover, we address the application of MALDI-MS for high-throughput glycan analysis in many fields of clinical and biochemical engineering.
 Keywords
MALDI-MS;Recombinant glycoprotein drug;Glycan;Quantitative analysis;Chemical derivatization;High-throughput analysis;
 Language
Korean
 Cited by
 References
1.
Alvarez-Manilla, G., N. L. Warren, T. Abney, J. Atwood, 3rd, P. Azadi, W. S. York, M. Pierce, and R. Orlando (2007) Tools for glycomics: Relative quantitation of glycans by isotopic permethylation using 13CH3I. Glycobiology 17: 677-687. crossref(new window)

2.
Blom, N., T. Sicheritz-Ponten, R. Gupta, S. Gammeltoft, and S. Brunak (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4: 1633-1649. crossref(new window)

3.
Chirino, A. J., M. L. Ary, and S. A. Marshall (2004) Minimizing the immunogenicity of protein therapeutics. Drug Discov. Today 9: 82-90. crossref(new window)

4.
Ciucanu, I. and C. E. Costello (2003) Elimination of oxidative degradation during the per-O-methylation of carbohydrates. J. Am. Chem. Soc. 125: 16213-16219. crossref(new window)

5.
Edelman, G. M. (1983) Cell adhesion molecules. Science 219: 450-457. crossref(new window)

6.
Endo, S., M. Morita, M. Ueno, T. Maeda, and T. Terabayashi (2009) Fluorescent labeling of a carboxyl group of sialic acid for MALDI-MS analysis of sialyloligosaccharides and ganglioside. Biochem. Biophys. Res. Commun. 378: 890-894. crossref(new window)

7.
Ghaderi, D., M. Zhang, N. Hurtado-Ziola, and A. Varki (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol. Genet. Eng. Rev. 28: 147-175. crossref(new window)

8.
Gil, G. C., B. Iliff, R. Cerny, W. H. Velander, and K. E. Van Cott (2010) High throughput quantification of N-glycans using one-pot sialic acid modification and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Anal. Chem. 82: 6613-6620. crossref(new window)

9.
Gil, G. C., Y. G. Kim, and B. G. Kim (2008) A relative and absolute quantification of neutral N-linked oligosaccharides using modification with carboxymethyl trimethylammonium hydrazide and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Biochem. 379: 45-59. crossref(new window)

10.
Hakomori, S. (1964) A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J. Biochem. 55: 205-208.

11.
Jang, K. S., Y. G. Kim, G. C. Gil, S. H. Park, and B. G. Kim (2009) Mass spectrometric quantification of neutral and sialylated N-glycans from a recombinant therapeutic glycoprotein produced in the two Chinese hamster ovary cell lines. Anal. Biochem. 386: 228-236. crossref(new window)

12.
Jeong, H. J., Y. G. Kim, Y. H. Yang, and B. G. Kim (2012) High-throughput quantitative analysis of total N-glycans by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 84: 3453-3460. crossref(new window)

13.
Kam, R. K., T. C. Poon, H. L. Chan, N. Wong, A. Y. Hui, and J. J. Sung (2007) High-throughput quantitative profiling of serum N-glycome by MALDI-TOF mass spectrometry and N-glycomic fingerprint of liver fibrosis. Clin. Chem. 53: 1254-1263. crossref(new window)

14.
Kang, P., Y. Mechref, I. Klouckova, and M. V. Novotny (2005) Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun. Mass Spectrom. 19: 3421-3428. crossref(new window)

15.
Kang, P., Y. Mechref, Z. Kyselova, J. A. Goetz, and M. V. Novotny (2007) Comparative glycomic mapping through quantitative permethylation and stable-isotope labeling. Anal. Chem. 79: 6064-6073. crossref(new window)

16.
Kang, P., Y. Mechref, and M. V. Novotny (2008) High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun. Mass Spectrom. 22: 721-734. crossref(new window)

17.
Kim, K. J., Y. W. Kim, C. H. Hwang, H. G. Park, Y. H. Yang, M. Koo, and Y. G. Kim (2015) A MALDI-MS-based quantitative targeted glycomics (MALDI-QTaG) for total N-glycan analysis. Biotechnol. Lett. 37: 2019-2025. crossref(new window)

18.
Kim, K. J., Y. W. Kim, Y. G. Kim, H. M. Park, J. M. Jin, Y. Hwan Kim, Y. H. Yang, J. Kyu Lee, J. Chung, S. G. Lee, and A. Saghatelian (2015) Stable isotopic labeling-based quantitative targeted glycomics (i-QTaG). Biotechnol. Prog. 31: 840-848. crossref(new window)

19.
Kim, Y. G., H. J. Jeong, K. S. Jang, Y. H. Yang, Y. S. Song, J. Chung, and B. G. Kim (2009) Rapid and high-throughput analysis of N-glycans from ovarian cancer serum using a 96-well plate platform. Anal. Biochem. 391: 151-153. crossref(new window)

20.
Kuster, B., T. J. Naven, and D. J. Harvey (1996) Rapid approach for sequencing neutral oligosaccharides by exoglycosidase digestion and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom. 31: 1131-1140. crossref(new window)

21.
Liu, X., H. Qiu, R. K. Lee, W. Chen, and J. Li (2010) Methylamidation for sialoglycomics by MALDI-MS: A facile derivatization strategy for both alpha2,3- and alpha2,6-linked sialic acids. Anal. Chem. 82: 8300-8306. crossref(new window)

22.
Lowe, J. B. (2001) Glycosylation, Immunity, and Autoimmunity. Cell 104: 809-812. crossref(new window)

23.
Matsumoto, K., C. Shimizu, T. Arao, M. Andoh, N. Katsumata, T. Kohno, K. Yonemori, F. Koizumi, H. Yokote, K. Aogi, K. Tamura, K. Nishio, and Y. Fujiwara (2009) Identification of predictive biomarkers for response to trastuzumab using plasma FUCA activity and N-glycan identified by MALDI-TOF-MS. J. Proteome. Res. 8: 457-462. crossref(new window)

24.
Morelle, W., V. Faid, F. Chirat, and J. C. Michalski (2009) Analysis of N- and O-linked glycans from glycoproteins using MALDI-TOF mass spectrometry. Methods Mol. Biol. 534: 5-21.

25.
Nishikaze, T., S. Kawabata, and K. Tanaka (2014) In-depth structural characterization of N-linked glycopeptides using complete derivatization for carboxyl groups followed by positive- and negative-ion tandem mass spectrometry. Anal. Chem. 86: 5360-5369. crossref(new window)

26.
Ohtsubo, K. and J. D. Marth (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126: 855-867. crossref(new window)

27.
Okamoto, M., K. Takahashi, T. Doi, and Y. Takimoto (1997) High-sensitivity detection and postsource decay of 2-aminopyridine-derivatized oligosaccharides with matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 69: 2919-2926. crossref(new window)

28.
Pabst, M., J. S. Bondili, J. Stadlmann, L. Mach, and F. Altmann (2007) Mass + retention time = structure: a strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal. Chem. 79: 5051-5057. crossref(new window)

29.
Prien, J. M., B. D. Prater, Q. Qin, and S. L. Cockrill (2010) Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics. Anal. Chem. 82: 1498-1508. crossref(new window)

30.
Royle, L., M. P. Campbell, C. M. Radcliffe, D. M. White, D. J. Harvey, J. L. Abrahams, Y. G. Kim, G. W. Henry, N. A. Shadick, M. E. Weinblatt, D. M. Lee, P. M. Rudd, and R. A. Dwek (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376: 1-12. crossref(new window)

31.
Rudd, P. M., T. Elliott, P. Cresswell, I. A. Wilson, and R. A. Dwek (2001) Glycosylation and the immune system. Science 291: 2370-2376. crossref(new window)

32.
Sekiya, S., Y. Wada, and K. Tanaka (2005) Derivatization for stabilizing sialic acids in MALDI-MS. Anal. Chem. 77: 4962-4968. crossref(new window)

33.
Swiech, K., V. Picanco-Castro, and D. T. Covas (2012) Human cells: New platform for recombinant therapeutic protein production. Protein Expr. Purif. 84: 147-153. crossref(new window)

34.
Tep, S., M. Hincapie, and W. S. Hancock (2012) A general approach for the purification and quantitative glycomic analysis of human plasma. Anal. Bioanal. Chem. 402: 2687-2700. crossref(new window)

35.
Toyoda, M., H. Ito, Y. K. Matsuno, H. Narimatsu, and A. Kameyama (2008) Quantitative derivatization of sialic acids for the detection of sialoglycans by MALDI MS. Anal. Chem. 80: 5211-5218. crossref(new window)

36.
Viseux, N., E. de Hoffmann, and B. Domon (1997) Structural analysis of permethylated oligosaccharides by electrospray tandem mass spectrometry. Anal. Chem. 69: 3193-3198. crossref(new window)

37.
Walsh, G., and R. Jefferis. (2006) Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24: 1241-1252. crossref(new window)

38.
Weiskopf, A. S., P. Vouros, and D. J. Harvey (1998) Electrospray ionization-ion trap mass spectrometry for structural analysis of complex N-linked glycoprotein oligosaccharides. Anal. Chem. 70: 4441-4447. crossref(new window)

39.
Wu, S., R. Grimm, J. B. German, and C. B. Lebrilla (2011) Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome. Res. 10: 856-868. crossref(new window)

40.
Wuhrer, M., C. A. Koeleman, and A. M. Deelder (2009) Two-dimensional HPLC separation with reverse-phase-nano-LC-MS/MS for the characterization of glycan pools after labeling with 2-aminobenzamide. Methods Mol. Biol. 534: 79-91.

41.
Xia, B., C. L. Feasley, G. P. Sachdev, D. F. Smith, and R. D. Cummings (2009) Glycan reductive isotope labeling for quantitative glycomics. Anal. Biochem. 387: 162-170. crossref(new window)

42.
Xie, Y., K. Tseng, C. B. Lebrilla, and J. L. Hedrick (2001) Targeted use of exoglycosidase digestion for the structural elucidation of neutral O-linked oligosaccharides. J. Am. Soc. Mass Spectrom. 12: 877-884. crossref(new window)

43.
York, W. S., L. L. Kiefer, P. Albersheim, and A. G. Darvill (1990) Oxidation of oligoglycosyl alditols during methylation catalyzed by sodium hydroxide and iodomethane in methyl sulfoxide. Carbohydrate Res. 208: 175-182. crossref(new window)

44.
Zhou, H., P. G. Warren, J. W. Froehlich, and R. S. Lee (2014) Dual modifications strategy to quantify neutral and sialylated N-glycans simultaneously by MALDI-MS. Anal. Chem. 86: 6277-6284. crossref(new window)