Advanced SearchSearch Tips
Antioxidant Activity of the Halophyte Ligustrum japonicum
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 30, Issue 6,  2015, pp.275-282
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2015.30.6.275
 Title & Authors
Antioxidant Activity of the Halophyte Ligustrum japonicum
Baek, Seung Oh; Kim, Hojun; Jeong, Heejeong; Ju, Eunsin; Kong, Chang-Suk; Seo, Youngwan;
  PDF(new window)
Dried samples of Ligustrum japonicum were extracted twice: with methylene chloride and with methanol (MeOH), respectively. The combined crude extracts were successively fractionated into n-hexane, 85% aqueous methanol (85% aq.MeOH), n-butanol (n-BuOH), and water fractions by liquid-liquid partition. Antioxidant activities of crude extract and its solvent fractions were evaluated by measuring authentic , and generated from 3-morpholinsydnonimine (SIN-1) as well as degree of occurrence of intracellular ROS in HT 1080 cells, and genomic DNA oxidation. The 85% aq.MeOH and n-BuOH fractions exhibited the good antioxidant activity. Further purification of the 85% aq.MeOH fracition led to the isolation of Oleanolic acid (1), Maslinic acid (2), and Ursolic acid (3). All compounds showed the significant antioxidant effects in all assay systems.
Ligustrum japonicum;Antioxidant;Reactive oxygen species (ROS);Peroxynitrite;
 Cited by
Power, S. T. and M. J. Jackson (2008) Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 88: 1243-1276. crossref(new window)

Barbieri, E. and Sestili, P. (2012) Reactive oxygen species in skeletal muscle signaling. J. Signal Transduct. 2012: 1-17.

da Silva, F. M., A. Marques, and A. Chaveiro (2010) Reactive oxygen species: A double-edged sword in reproduction. Open Vet. Sci. J. 4: 127-133. crossref(new window)

Sung, C., Y. Hsu, C. Chen, Y. Lin, and C. Wu (2013) Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. Oxid. Med. Cell Longev. 2013: 1-15.

Alfadda, A. A. and Sallam, R. M. (2012) Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 1-14.

Gutierrez, J. and M. S. V. Elkind (2012) Chronic inflammatory diseases and stroke: Evidence for heterogeneous mechanisms. Ann. Neurol. 72: S6-S7.

Choi, U., D.-H. shin, Y-S Chang, and J. I Shin (1992) Screening of natrura antioxidant from plant and their antioxidative effect. Korea J. Food Sci. Technol. 24: 142-148.

Karre, L., K. Lopez, and K. J. Getty (2013) Natural antioxidants in meat and poultry products. Meat Sci. 94: 220-227. crossref(new window)

Jo, J.-O. and I.-C. Jung (2006) Phenolic compounds of Ligustrum japonicum leaves. J. Korea Soc. Food Sci. Nutr. 35: 713-720. crossref(new window)

Kim, Y. J., Y. R. Lee, J. W. Cheon, and H. S. Lee (2010) Antiaging effect of Ligustrum japonicum extract in the human fibroblast cells. J. Soc. Cosmet. Scientists Korea 36: 295-301.

Sung, S. Y., E. S. Kim, K. Y. Lee, M. K. Lee, Y. C. Kim (2006) A new neuroprotective compound of Ligustrum japonicum leaves. Planta Med. 72: 62-64. crossref(new window)

Papoti, V. T., K. Pegklidou, E. Perifantsi, N. Nenadis, V. J. Demopoulos, and M. Z. Tsimidou (2011) Antioxidant and aldose reductase inhibition activity of Ligustrum japonicum and Olea europaea L. leaf extracts. Eur. J. Lipid Sci. Technol. 113: 876-885. crossref(new window)

Kooy, N. W., J. A. Royall, H. Ischiropoulos, and J. S. Beckman (1994) Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med. 16:149-156. crossref(new window)

Okimoto, Y., A. Watanabe, E. Niki, T. Yamashita, and N. Noguchi (2000) A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett. 474: 137-140.. crossref(new window)

Miline, L., P. Nicotera, S. Orrenius, and M. Burkitt (1993) Effects of glutathione and chelating agents on copper-mediated DNA oxidation: Prooxidant and antioxidant properties of glutathione. Arch. Biochem. Biophys. 304: 102-109. crossref(new window)

Werner, S., S. Nebojsa, W. Robert, S. Robert, and K. Olaf (2003) Complete assignments of $^{1}H$ and $^{13}C$ NMR resonances of oleanolic acid, $18{\alpha}$-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn Reson Chem 41: 636-638. crossref(new window)

Ibrahim, T. B. and O. S. Francis (2013) Ubiquitous ursolic acid: a potential pentacyclic triterpene natural product. J. Pharmacogn. Phytochem. 2: 214-222.

Woo, K. W., J. Y. Han, S. U. Choi, K. H. Kim, and K. R. Lee (2014) Triterpenes from Perilla frutescens var. acuta and their cytotoxic activity. Natural Product Sciences 20: 71-75.

Choudhary, A., A. K. Mittal, M. Radhika, D. Tripathy, A. Chatterjee, U. C. Banerjee, and I. P. Singh (2013) Two new stereoisomeric antioxidant triterpenes from Potentilla fulgens. Fitoterapia 91: 290-297. crossref(new window)

D'Abrosca, B., A. Fiorentino, P. Monaco, P. Oriano, and S. Pacifico (2006) Annurcoic acid: A new antioxidant ursane triterpene from fruits of cv. Annurca apple. Food Chem. 98: 285-290. crossref(new window)

Ramachandran, S. and N. R. Prasad (2008) Effect of ursolic acid, a triterpenoid antioxidant, on ultraviolet-B radiation-induced cytotoxicity, lipid peroxidation and DNA damage in human lymphocytes. Chem. Biol. Interact. 176: 99-107. crossref(new window)

Montilla, M. P., A. Agil, M. C. Navarro, M. I. Jimnez, A. Garca- Granados, A. Parra, and M. M. Cabo (2003) Antioxidant activity of Maslinic acid, a triterpene derivative obtained from Olea europaea. Planta Med. 69: 470-472. crossref(new window)

Liu, C.-H., M.-H. Yen, S.-F. Tsang, K.-H. Gan, H.-Y. Hsu, and C.- N. Lin (2010) Antioxidant triterpenoids from the stems of Momordica charantia. Food Chem. 118: 751-756. crossref(new window)

Qiao, A., Y. Wang, L. Xiang, Z. Zhang, and X. He (2014) Triterpenoids of sour jujube show pronounced inhibitory effect on human tumor cells and antioxidant activity. Fitoterapia 98: 137-142. crossref(new window)

Qiao, A., Y. Wang, L. Xiang, Z. Zhang, and X. He (2015) Novel triterpenoids isolated from hawthorn berries functioned as antioxidant and antiproliferative activities. J. Funct. Foods 13: 308-313. crossref(new window)