JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optimization of Cellulase Production from Paenibacillus jamilae BRC 15-1
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 30, Issue 6,  2015, pp.283-290
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2015.30.6.283
 Title & Authors
Optimization of Cellulase Production from Paenibacillus jamilae BRC 15-1
Cha, Young-Lok; Yoon, Young-Mi; Yoon, Ha-Yan; Kim, Jung Kon; Yang, Ji-Young; Na, Han-Beur; Ahn, Jong-Woong; Moon, Youn-Ho; Choi, In-Hu; Yu, Gyeong-Dan; Lee, Ji-Eun; An, Gi Hong; Lee, Kyeong-Bo;
  PDF(new window)
 Abstract
In this study was selected the cellulolytic microorganism and investigated optimum condition of cellulase production for the cellulosic bioethanol production. A bacterial strain Paenibacillus jamilae BRC15-1, was isolated from soil of domestic reclaimed land. For optimizing cellulase production from the selected strain, various culture parameters were investigated such as culture medium, pH (pH 4~10), temperature () and culture time (2~72 h). As a result, P. jamilae BRC15-1 efficiently produced cellulase from cellulosic biomass under following conditions: 24 h of culture time (pH 7, ) in manufactured media of CMC (carboxymethyl cellulose) with peptone. Optimum saccharifying condition of crude enzyme produced from P. jamilae BRC15-1 was identified on pH 6 and of reaction temperature, respectively. This crude enzyme from P. jamilae BRC15-1 was used for saccharification of pretreated sweet sorghum (Sorghum bicolor var. dulciusculum Ohwi) bagasse under the optimal condition. Finally, pretreated sweet sorghum bagasse including 0.1 g of glucan was saccharified by crude enzyme of P. jamilae BRC15-1 into 2.75 mg glucose, 0.79 mg xylose and 1.12 mg arabinose.
 Keywords
Cellulase;Bioethanol;Saccharification;Paenibacillus sp.;Sweet sorghum bagasse;
 Language
Korean
 Cited by
 References
1.
Kim, J. W. (2014) Effects of fermentation parameters on cellulolytic enzyme production under solid substrate fermentation. Korean Chem. Enh. Res. 52: 302-306. crossref(new window)

2.
Ministry of Trade, Industry and Energy (2015) Korea Biotechnology Industry Organization Based on 2013 National bio-industry survey report, Seoul, Korea.

3.
Sarkar, N., S. K. Ghosh, S. Bannerjee, and K. Aikat (2012) Bioethanol production from agricultural wastes. Renew. Energ. 37: 19-27. crossref(new window)

4.
Dhillon, G. S., S. K. Brar, S. Kaur, and M. Verma (2013) Bioproduction and extraction optimization of citric acid from Aspergillus niger by rotating drum type solid-state bioreactor. Ond. Cropprod. 41: 78-84.

5.
Reese, E. T., R. G. Siu, and H. S. Levinson (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 59: 485.

6.
Steffan, R., A. Breen, R. Atlas, and G. Sayler (2011) Application of gene probe methods for monitoring specific microbial populations in freshwater ecosystems. Can. J. Microbiol. 35: 681-685.

7.
Jung, S. R. (2015) Efficient enzymatic bioconversion of cellulosic biomass and development of plant enzyme farming system with autohydrolysis. Ph.D. Thesis. Chonnam National University, Gwangju, Korea.

8.
Harris, P. V., D. Welner, K. C. McFarland, E. Re, J. N. Poulsen, K. Brown, R. Salbo, H. Ding, E. Vlasenko, S. Merino, F. Xu, J. Cherry, S. Larsen, and L. L. Leggio (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry. 49: 3305-3316. crossref(new window)

9.
Giddings, G. (2001) Transgenic plants as protein factories. Curr. Opin. Biotech. 12: 450-454. crossref(new window)

10.
Bogorad, L. (2000) Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. Trends Biothchnol. 18: 257-263. crossref(new window)

11.
Dinant, S., C. Ripoll, M. Pieper, and C. Cavid (2004) Phloem specific expression driven by wheat dwarf geminivirus V-sense promoter in transgenic dicotyledonous species. Physiol Plant. 121: 108-116. crossref(new window)

12.
Yakoby, N., A. Garvey, and I. Raskin (2006) Tobacco ribosomal DNA spacer element elevates Bowman-Birk inhibitor expression in tomato plants. Plant cell Reports. 25: 573-581. crossref(new window)

13.
Lee, J. S. (2013) Isolation and characterization of cellulase-producing Bacillus licheniformis STB1. M.S. Thesis. Dankook University, Yongin-si, Gyeonggi-do, Korea.

14.
Jung, Y. H., J. H. Hong, K. S. Youn, H. K. No, S. H. Lee, and C. S. Park (2013) Screening of microorganism producing cellulase from Doenjang, a Korean traditional fermented food and characterization of cellulase from cellulolytic microorganism. Department of Food Science and Tech. 712-702.

15.
Jang, Y. R. (2013) Development of multiple-stress resistant yeast strains for lignocellulosic bioethanol production. Ph.D. Thesis. University of Suwon, Hwaseong-si, Gyeonggi-do, Korea.

16.
Kim I. H., J. S. Park, J. D. Hancock, R. H. Hines, C. Cobb, H. Cao, J. W. Hong and O. S. Kwon (2003) Effects of amylase and cellulase supplementation in sorghum-based diets for finishing pigs. J. Anim. Sci. 16: 70-76.

17.
Mosolova, T. P., S. Y. Kaliuzhny and G. A. Velikodvorskaia (1993) Purification and some properties of Clostridium thermocellum endoglucanase, formed by a recombinant Escherichia coli strain. Biokhimiia. 58: 1213-1220.

18.
Ghose T. K. (1987) Measurement of cellulase activities. Pure Appl Chem. 59: 257-268.

19.
Seling, M., N. Weiss and Y. Ji (2008) Enzymatic saccharification of lignocellulosic biomass in the LAP(laboratory analytical procedure) technical report NREL. Golden, Colorado, US.

20.
Margarita, A., M. S. Mercedes, S. Antonio, G. Victor, L. Catherine, B. Antonio, and R. C. Alberto (2001) Paenibacillus jamilae sp. nov., an exopolysaccharide-producing bacterium able to grow in olive-mill wastewater. International Journal of Systenatic and Evolutionary Microbiology. 51: 1687-1692. crossref(new window)

21.
Shida, O., H. Takagi, K. Kadowaki, L. K. Nakamura, and K. Komagata (1997) Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol 47: 289-298. crossref(new window)

22.
Kim, H. J., Y. H. Kim, M. J. Cho, K. Shin, D. H. Lee, T. J. Kim, and Y. S. Kim (2010) Characterization of cellulases from Schizophyllum commune for hydrolysis of cellulosic biomass. Wood Sci Technol. 38: 547-560.