JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Production of Recombinant GG1234-DsRed Fusion Protein and Its Effect on in vitro CaCO3 Crystallization
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 30, Issue 6,  2015, pp.296-301
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2015.30.6.296
 Title & Authors
Production of Recombinant GG1234-DsRed Fusion Protein and Its Effect on in vitro CaCO3 Crystallization
Son, Chaeyeon; Kim, Jin Ho; Kim, Ji Ha; Choi, Yoo Seong;
  PDF(new window)
 Abstract
Eggshell-based biocomposites have become attractive due to their exquisite nanostructure and biological properties, which are mainly composed of highly organized calcium carbonate crystals controlled by organic macromolecules such as proteins and polysaccharides. Here, we designed the recombinant fusion protein of a putative eggshell matrix protein named as GG1234 and a fluorescent reporter protein of DsRed. The protein was successfully over-expressed in E. coli and purified by Ni-NTA affinity chromatography. In vitro calcium carbonate crystallization was conducted in the presence of the fusion protein, and morphological change was investigated. The protein inhibited the calcite growth in vitro, and spherical calcium carbonate micro-particles with the diameter of about were obtained. We expect that this study would be helpful for better understanding of eggshell-based biomineralization.
 Keywords
Biomineralization;Calcium carbonate;Recombinant protein;Fusion protein;
 Language
Korean
 Cited by
 References
1.
Marin, F., G. Luquet, B. Marie, and D. Medakovic (2008) Molluscan shell proteins: primary structure, origin, and evolution. Curr. Top. Dev. Biol. 80: 209-276.

2.
Rose, M. L. H. and M. T. Hincke (2009) Protein constituents of the eggshell: Eggshell-specific matrix proteins. Cell. Mol. Life Sci. 66: 2707-2719. crossref(new window)

3.
Miyamoto, H., H. Endo, N. Hashimoto, K. Iimura, Y. Isowa, S. Kinoshita, T. Kotaki, T. Masaoka, T. Miki, S. Nakayama, C. Nogawa, A. Notazawa, F. Ohmori, I. Sarashina, M. Suzuki, R. Takagi, J. Takahashi, T. Takeuchi, N. Yokoo, N. Satoh, H. Toyohara, T. Miyashita, H. Wada, T. Samata, K. Endo, H. Nagasawa, S. Asakawa, and S. Watabe (2013) The diversity of shell matrix proteins: Genome-wide investigation of the pearl oyster, Pinctada fucata. Zool. Sci. 30: 801-816. crossref(new window)

4.
Mann, K., B. Macek, and J. V. Olsen (2006) Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. Proteomics 6: 3801-3810. crossref(new window)

5.
Evans, J. S. (2012) Aragonite-associated biomineralization proteins are disordered and contain interactive motifs. Bioinformatics 28: 3182-3185. crossref(new window)

6.
Picker, A., M. Kellermeier, J. Seto, D. Gebauer, and H. Colfen (2012) The multiple effects of amino acids on the early stages of calcium carbonate crystallization. Z. Kristallogr. 227: 744-757.

7.
Magdalena, W., P. Dobryszycki, and A. Ozyhar (2012) Intrinsically disordered proteins in biomineralization. pp 3-32. In: J. Seto (ed.), Advanced Topics in Biominerlization. InTech.

8.
Sun, J. and B. Bhushan (2012) Hierarchical structure and mechanical properties of nacre: A review. RSC adv. 2: 7617-7632. crossref(new window)

9.
Suzuki, M., K. Saruwatari, T. Kogure, Y. Yamamoto, T. Nishimura, T. Kato, and H. Nagasawa (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325: 1388- 1390. crossref(new window)

10.
Addadi, L., D. Joester, F. Nudelman, and S. Weiner (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem. 12: 980-987. crossref(new window)

11.
Briegel, C. and J. Seto (2012) Single amino acids as additives modulating $CaCO_3$ mineralization. pp 33-48. In: J. Seto (ed.), Advanced Topics in Biominerlization. InTech.

12.
Nys, Y., J. Gautron, J. M. Garcia-Ruiz, and M. T. Hincke (2004) Avian eggshell mineralization: biochemical and functional charac-terization of matrix proteins. Cr. Palevol. 3: 549-562. crossref(new window)

13.
Addadi, L. and S. Weiner (1992) Control and design principles in biological mineralization. Angew. Chem. Int. Ed. 31: 153-169. crossref(new window)

14.
Cordeiro, C. M. and M. T. Hincke (2011) Recent patents on eggshell: shell and membrane applications. Recent Pat. Food Nutr. Agric. 3: 1-8. crossref(new window)

15.
Chien, Y. C., M. T. Hincke, and M. D. McKee (2009) Avian eggshell structure and osteopontin. Cells Tissues Organs 189: 38-43. crossref(new window)

16.
Wang, X., R. Kong, X. Pan, H. Xu, D. Xia, H. Shan, and J. R. Lu (2009) Role of ovalbumin in the stabilization of metastable vaterite in calcium carbonate biomineralization. J. Phys. Chem. B 113: 8975-8982. crossref(new window)

17.
Wang, X., H. Sun, Y. Xia, C. Chen, H. Xu, H. Shan, and J. R. Lu (2009) Lysozyme mediated calcium carbonate mineralization. J. Colloid Interface Sci. 332: 96-103. crossref(new window)

18.
Son, C. S. Y. Bahn, H. J. Cha, and Y. S. Choi (2015) Calcium binding proteins and coacervate formed from calcium binding proteins. Korea patent 10-2015-0064348.

19.
Bahn, S. Y., B. H. Jo, B. H. Hwang, Y. S. Choi, and H. J. Cha (2015) Role of Pif97 in nacre biomineralization: In vitro characterization of recombinant Pif97 as a framework protein for the association of organic-inorganic layers in nacre. Cryst. Growth Des. 15: 3666-3673. crossref(new window)

20.
Marin, F., G. Luquet, B. Marie, and D. Medakovic (2008) Molluscan shell proteins: Primary structure, origin, and evolution. Curr. Top. Dev. Biol. 80: 209-276.

21.
Addadi, L., S. Raz, and S. Weiner (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15: 959-970. crossref(new window)