Advanced SearchSearch Tips
Effect of NaNO3 and NaHCO3 Concentration on Microglae Arthrospira platensis Growth
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 30, Issue 6,  2015, pp.319-325
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2015.30.6.319
 Title & Authors
Effect of NaNO3 and NaHCO3 Concentration on Microglae Arthrospira platensis Growth
Choi, Soo-Jeong; Ha, Jong-Myung; Lee, Jae-Hwa;
  PDF(new window)
Arthrospira platensis (A. platensis) is one of the most explored cyanobacteria and has been studied for proteins, vitamins, pigment (chlorophyll and carotenoids) and fatty acid. In this study, we tested the effect of and on the microalgae growth under photoautothrophic culture in A. platensis. As a result, cell growth and dry cell weight were increased in proportion to the and concentration. Pigment (chlorophyll and carotenoids) contents of A. platensis were increased with proportion to concentration. But, the content of pigment (chlorophyll and carotenoids) in 100% medium of A. platensis was the highest, 40%, 140% and 200% medium with pigment content of A. platensis was reduced. In conditions of (50%) or (40%) limitation, A. platensis could accumulate lipids to high as 1.7-fold and 1.3-fold.
Arthrospira platensis; and ;Lipid;Pigment;Photosynthesis;
 Cited by
Pirt, S. J. (1986) The thermodynamic efficiency (quantum demand) and dynamics of photosyntehtic growth. New Phytol. 102: 3-37. crossref(new window)

Benemann, J. R. (1997) $CO_{2}$ mitigation with microalgal systems. Energy convers Mgnt. 22: 475-479.

Micon, A. S., M. C. C. Garcia, A. C. Gomez, F. G. Camacho, E. M. Grima, and Y. Chisti (2003) Shear stress tolerance and biochemical characterization of Peaeodactylum tricounutum inquasi steadystate continuous culture in outdoor photobioreactors. Biochem. Eng. J. 16: 287-297. crossref(new window)

Henrikson, (1989) Earth food Spirulina. California: Ronore Enterprises Inc, 180.

Estrada, J. E., P. Bescos, and A. M. Villar Del Fresno (2001) Antioxidant activigy of different frractions of Spirulina platensis protean extract. IL Farmaco, 56: 497-500. crossref(new window)

Miranda, M. S., R. G. Cintra, S. B. M. Barros, and J. M. Filho (1998) Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol. Res. 31: 1075-1079. crossref(new window)

Wijffels, R. H. and M. J. Barbosa (2010) An outlook on microalgal biofuels. Science 329: 796-799. crossref(new window)

Vicente, G., M. Martinez, and J. Aracil (2004) Integrated biodisel production: a comparison of different homogeneous catalysts systems. Bioresour. Technol. 92: 297-305. crossref(new window)

Karkos, P. D., S. C. Leong, C. D. Karkos, N. Siraji, and D. A. Assimkapoulos (2008) Review of Spirulina inclinical practice: Evidence- based human applications. Evid. base Compl. Alternative Med. 14: 1-4. crossref(new window)

Choi, S.-J., Y.-H. Kim, A. Kim, and J.-H. Lee (2013) Arthrospira platensis mutants containing high lipid content by electron beam irradiation and analysis of its fatty acid composition. Appl. Chem. Eng. 24: 628-632. crossref(new window)

Miron, A. S., F. G. Gamacho, Z. C. Gomez, E. M. Grima, and Y. Chisti (2000) Bubble column and airlift photobioreactors for algal culture. AIChE J. 46: 1872-1887. crossref(new window)

Chiu, S., C. Kao, M. Tsai, S. Ong, C. Chen, and C. Lin (2009) Lipid accumulation and $CO_{2}$ utilization of Nannochloropsis oculata in response to $CO_{2}$ aeration. Bioresour. Technol. 100: 833-839. crossref(new window)

Danesi, E. D. G., C. O. R. Yagui, J. C. M. Carvalho, and S. Sato (2004) Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenergy 102: 329-335.

Cullen, J. J., X. Yang, and H. L. Macintyre (1992) Nutrient limitation and marine photosynthesis. In Primary Productivity and Biochemical Cycles in the sea, 69-88, Plenum Press.

Brennan, L. and P. Owende (2010) Biofuels form microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust. Energ. Rev. 14: 557-577. crossref(new window)

Converti, A., A. A. Casazza, E. Y. Ortiz, P. Perego, and M. E. Borghi (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process 48: 1146- 1151. crossref(new window)

Shen, Y., Z. Pei, W. Yuan, and E. Mao (2009) Effect of nitrogen and extraction method on algae lipid yield. Int. J. Agric. Biol. Eng. 2: 51-57.

Geider, R. J., J. L. Roche, R. M. Greene, and M. Olaizola (1993) Response of the photosynthetic apparatus of Phaeodactylum triocormutum (Bacillario-phyceae) to nitrate, phosphate and iron starvation. J. Phycol. 29: 755-766. crossref(new window)

Joo, S.-J., S. Zhang, K. J. Choi, S. M. Lee, and S.-J. Hwang (2014) Effects of sodium bicarbonate as an inorganic carbon source on the growth of Scenedesmus dimorphus. J. KSWW 28: 555-560.

Goldberg, I. K. and Z. Cohen (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696-701. crossref(new window)

Choi, S.-J. and J.-H. Lee (2015) Characteristic of Arthrospira platensis enhanced antioxidant activity. Kor. Soc. Biotechnol. Bioeng. J. 30: 119-124.

Moon, S.-R., B.-K. Son, J.-O. Yang, J.-S. Woo, C. M. Yoom, and G.-H. Kim (2010) Effect of electron-beam irradiation on development and reproduction of Bemisia tabaci, Myzus persicae, Plutella xylostella and Tetranychus urticae. Kor. J. Appl. Entomol. 49:129.

Chiu, S.-Y., C.-Y. Kao, M.-T. Tsai, S.-C. Ong, C.-H. Chen, and C.- S. Lin (2009) Lipid accumulation and $CO_{2}$ utilization of Nannochloropsis oculata in response to $CO_{2}$ aeration. Bioresour. Technol. 100: 833-838. crossref(new window)

Chen, W., M. Sommerfeld, and Q. Hu (2011) Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour. Technol. 102: 135. crossref(new window)

Bertozzini, E., L. Galluzzi, A. Penna, and M. magnani (2011) Application of the standard addition method for the absolute quantification of newtural lipids in microalge using Nile red. J. Microbiol. Methods 87: 17. crossref(new window)

Jitendra, M., S. Priyanka, J. Madhulika, S. Mohsina, M. Komal, and K. Neha (2012) Impact of different physical and chemical environment for mass production of Spirulina platensis -an immunity promotor. I. Res. J. Biological Sci. 1: 49-56.

Li, X., H.-Y. Hu, K. Gan, and Y.-X. Sun (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a fresh water microalga Scenedesmus sp.. Bioresour. Technol. 101: 5494-5500. crossref(new window)

Schmidt, L. E. and P. J. Hansen (2001) Allelopathy in the prymnesiophyte Chrysochromulina polylepis: Effect of cell concentration, growth phace and pH. Mar. Ecol. Prog. Ser. 216: 67-81. crossref(new window)

Colla, L. M., C. O. Reinehr, C. Reichert, and J. A. V. Costa (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour. Technol. 98: 1489-1493. crossref(new window)

Feng, D.-L., Z.-C. Wu, and D.-H. Wang (2007) Effects of N source and nitrification pretreatment on growth of Arthrospira platensis in human urine. J. Zheijang Univ. Sci. A 8: 1846-1852. crossref(new window)

Sharma, G., M. Kumar, M. I. Ali, and N. D. Jasuja (2014) Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. J. Microb. Biochem. Technol. 6: 202-206.

Chauhan, S., V. Kaithwas, R. Kachouli, and S. Bhargava (2013) Productivity of the cyanobacterium Spirulina platensis in culture using high bicarbonate and different nitrogen sources. American J. Plant. Physiol. 8: 17-31. crossref(new window)

Vonshak, A., N. Kancharaksa, B. Bunnag, and M. Tahicharoen (1996) Role of light and photosynthesis on the acclimation process of the cyanobacteria Spirulina platensis to salinity stress. J. Appl. Phycol. 8: 119-124. crossref(new window)

Kim, Y.-H., S.-J. Choi, H.-J. Park, and J.-H. Lee (2014) Electron beam-induced mutants of microalgae Arthrospira platensis increased antioxidant activity. Ind. Eng. Chem. 20: 1834-1840. crossref(new window)

Ordog, V., W. A. Stirk, P. Balint, J. V. Staden, and C. Lovasz (2012) Change in lipid, protein and pigment concentrations in nitrogenstressed Chlorella minutissima cultures. J. Appl. Phycol. 24: 907-914. crossref(new window)

Li, Y., M. Horsman, B. Wang, N. Wu, and C. Q. Lan (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleabundans. Appl. Micobiol. Biotechnol. 81: 629-636. crossref(new window)

Boussiba, S., B. Wang, P. P. Yuan, A. Zarka, and F. Chen (1999) Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol. Lett. 21: 601-604. crossref(new window)

Guiheneuf, F., V. Mimouni, L. Ulmann, and G. Tremblin (2009) Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. J. Exp. Mar. Biol. Ecol. 369: 136-143. crossref(new window)

Xia, L., J. Rong, H. Yang, Q. He, D. Zhang, and C. Hu (2014) NaCl as an effective inducer for lipid accumulation in fresh microalgae Desmodesmus abundans. Bioresour. Technol. 161: 402-409. crossref(new window)

Gill, I. and R. Valiverty (1997) Polyunsaturated fatty acids: Occurrence, biological activities and application. Trends Biotechnol. 15: 401-409. crossref(new window)

Feng, D., Z. Chen, S. Xue, and W. Zhang (2011) Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour. Technol. 102: 6710-6716. crossref(new window)

Kim, G. R., G. Mujtaba, M. Rizwan, and K. S. Lee (2014) Environmental stress strategies for stimulating lipid production from microalgae for biodisel. Appl. Chem. Eng. 25: 553-558. crossref(new window)