JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Pilot-scale Production of the Antifreeze Protein from Antarctic Bacterium Flavobacterium frigoris PS1 by Recombinant Escherichia coli with a Cold Shock Induction System
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 30, Issue 6,  2015, pp.345-349
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2015.30.6.345
 Title & Authors
Pilot-scale Production of the Antifreeze Protein from Antarctic Bacterium Flavobacterium frigoris PS1 by Recombinant Escherichia coli with a Cold Shock Induction System
Kim, Eun Jae; Lee, Jun Hyuck; Lee, Sung Gu; Han, Se Jong;
  PDF(new window)
 Abstract
Antifreeze proteins (AFP) inhibit growth and recrystallization of ice, and permit organisms to survive in cold environments. The AFP from an Antarctic bacterium, Flavobacterium frigoris PS1, FfIBP (Flavobacterium frigoris icebinding protein), was produced in E. coli using a cold shock induction system. The culture temperature was shifted from to and a 20 L culture scale was used. The final weights of dried cell and FfIBP were estimated to be 126 g and 8.4 g, respectively. The thermal hysteresis (TH) activity () of the produced FfIBP was 3.6-fold higher than that of the LeIBP (Leucosporidium ice-binding protein) produced in Picha. The current study demonstrates that large-scale production of FfIBP was successful and the result could be extended to further application studies using recombinant AFPs.
 Keywords
Antarctica;Antifreeze protein;Cold shock induction;Flavobacterium frigoris;Pilot scale fermentation;
 Language
Korean
 Cited by
 References
1.
Jia, Z. and P. L. Davies (2002) Antifreeze proteins: An unusual receptor-ligand interaction. Trends Biochem. Sci. 27: 101-106. crossref(new window)

2.
Venketesh, S. and C. Dayananda (2008) Properties, potentials, and prospects of antifreeze proteins. Crit. Rev. Biotechnol. 28: 57-82. crossref(new window)

3.
Barrett, J. (2001) Thermal hysteresis proteins. Int. J. Biochem. Cell Biol. 33: 105-117. crossref(new window)

4.
Ben, R. N. (2001) Antifreeze glycoproteins-preventing the growth of ice. Chembiochem. 2: 161-166. crossref(new window)

5.
Bouvet, V. and R. N. Ben (2003) Antifreeze glycoproteins: structure, conformation, and biological applications. Cell Biochem. Biophys. 39: 133-144. crossref(new window)

6.
Fuller, B. J. (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Lett. 25: 375-388.

7.
Harding, M. M., P. I. Anderberg, and A. D. Haymet (2003) 'Antifreeze' glycoproteins from polar fish. Eur. J. Biochem. 270: 1381- 1392. crossref(new window)

8.
Lee, J. K., K. S. Park, S. Park, H. Park, Y. H. Song, S. H. Kang, and H. J. Kim (2010) An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiol. 60: 222-228. crossref(new window)

9.
Park, K. S., H. Do, J. H. Lee, S. I. Park, E. Kim, S. J. Kim, S. H. Kang and H. J. Kim (2012) Characterization of the ice-binding protein from Arctic yeast Leucosporidium sp. AY30. Cryobiol. 64: 286-296. crossref(new window)

10.
Lee, J. H., A. K. Park, H. Do, K. S. Park, S. H. Moh, Y. M. Chi, and H. J. Kim (2012) Structural basis for antifreeze activity of icebinding protein from arctic yeast. J. Biol. Chem. 287: 11460-11468. crossref(new window)

11.
Lee, J. H., S. G. Lee, H. Do, J. C. Park, E. Kim, Y. H. Choe, S. J. Han, and H. J. Kim (2013) Optimization of the pilot-scale produc-tion of an ice-binding protein by fed-batch culture of Pichia pastoris. Appl. Microbiol. Biotechnol. 97: 3383-3393. crossref(new window)

12.
Do, H., J. H. Lee, S. G. Lee, and H. J. Kim (2012) Crystallization and preliminary X-ray crystallographic analysis of an ice-binding protein (FfIBP) from Flavobacterium frigoris PS1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 68: 806-809. crossref(new window)

13.
Kim, E. J., H. Do, J. H. Lee, S. G. Lee, H. J. Kim, and S. J. Han (2014) Production of antifreeze protein from Antarctic bacterium Flavobacterium frigoris PS1 by using fed-batch culture of recombinant Pichia pastoris. Kor. Soc. Biotechnol. Bioeng. J. 29: 303-306.

14.
Han, S. J., S. Cho, K. Lowehhaupt, S. Y. Park, S. J. Sim and Y. G. Kim (2013) Recombinant tagging system using ribosomal frameshifting to monitor protein expression. Biotechnol. Bioeng. 110: 898-904. crossref(new window)