Advanced SearchSearch Tips
Production of Biobutanol by Clostridium beijerinckii from Water Hyacinth
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 31, Issue 1,  2016, pp.79-84
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2016.31.1.79
 Title & Authors
Production of Biobutanol by Clostridium beijerinckii from Water Hyacinth
Park, Bong-Je; Park, Hye Min; Yun, Hyun Shik;
  PDF(new window)
Biofuel has been considered as promising renewable energy to solve various problems that result from increasing usage of fossil fuels since the early 20th century. In terms of chemical and physical properties as fuel, biobutanol has more merits than bioethanol. It could replace gasoline for transportation and industrial demand is increasing significantly. Production of butanol can be achieved by chemical synthesis or by microbial fermentation. The water hyacinth, an aquatic macrophyte, originated from tropical South America but is currently distributed all over the world. Water hyacinth has excellent water purification capacity and it can be utilized as animal feed, organic fertilizer, and biomass feedstock. However, it can cause problems in the rivers and lakes due to its rapid growth and dense mats formation. In this study, the potential of water hyacinth was evaluated as a lignocellulosic biomass feedstock in biobutanol fermentation by using Clostridium beijerinckii. Water hyacinth was converted to water hyacinth hydrolysate medium through pretreatment and saccharification. It was found that productivity of water hyacinth hydrolysate medium on biobutanol production was comparable to general medium.
Water hyacinth;Lignocellulosic biomass;Biobutanol;Clostridium beijerinckii; alginate bead;
 Cited by
Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process, Bioresource Technology, 2017  crossref(new windwow)
Biosynthesis of 2-Hydroxyacid-Containing Polyhydroxyalkanoates by Employing butyryl-CoA Transferases in Metabolically Engineered Escherichia coli, Biotechnology Journal, 2017, 1700116  crossref(new windwow)
Agarwal, A. K. (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energ. Combust. 33: 233-271. crossref(new window)

Escobar, J. C., E. S. Lora, O. J. Venturini, E. E. Yanez, E. F. Castillo, and O. Almazan (2009) Biofuels: environment, technology and food security. Renew. Sust. Energ. Rev. 13: 1275-1287. crossref(new window)

Swana, J., Y. Yang, M. Behnam, and R. Thompson (2011) An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Bioresource Technol. 102: 2112-2117. crossref(new window)

Rubin, E. M. (2008) Genomics of cellulosic biofuels. Nature 454: 841-845. crossref(new window)

Veronica, G., J. Pakkila, H. Ojamo, E. Muurinen, and R. L. Keiski (2011) Challenges in biobutanol production: How to improve the efficiency? Renew. Sust. Energ. Rev. 15: 964-980. crossref(new window)

Jones, D. T., and D. R. Woods (1986) Acetone-butanol fermentation revisited. Microbiol. Rev. 50: 484-524.

Liu, Z., Y. Ying, F. Li, C. Ma, and P. Xu (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J. Ind. Microbiol. Biotechnol. 37: 495-501. crossref(new window)

Ahn, J. H., B. I. Sang, and Y. Um (2011) Butanol production from thin stillage using Clostridium pasteurianum. Bioresource Technol. 102: 4934-4937. crossref(new window)

Lu, C., J. Zhao, S. T. Yang, and D. Wei (2012) Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresource Technol. 104: 380–387. crossref(new window)

Malaviya, A., Y. S. Jang, and S. Y. Lee (2012) Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl. Microbiol. Biotechnol. 93: 1485-1494. crossref(new window)

Festel, G. W. (2008) Biofuels–economic aspects. Chem. Eng. Technol. 31: 715-720. crossref(new window)

Jork, N., G. Breton, M. V. Omelchenko, K. S. Makarova, Q. Zeng, R. Gibson, H. M. Lee, J. Dubois, D. Qiu, J. Hitti, GTC Sequencing Center Production, Finshig, and Bioinformatics Teams, Y. I. Wolf, R. L. Tatusov, F. Sabathe, L. Doucette-Stamm, P. Soucaille, M. J. Daly, G. N. Bennett, E. V. Koonin, and D. R. Smith (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183: 4823-4838. crossref(new window)

Lee, S. Y., J. H. Park, S. H. Jang, L. K. Nielsen, J. H. Kim, and K. S. Jung (2008) Fermentative butanol production by Clostridia. Biotechnol. Bioeng. 101: 209-228. crossref(new window)

Ezeji, T., and H. P. Blaschek (2008) Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and valueadded products by solventogenic Clostridia. Bioresource Technol. 99: 5232-5242. crossref(new window)

Thang, V. H., K. Kanda, and G. Kobayashi (2010) Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl. Biochem. Biotechnol. 161: 157-170. crossref(new window)

Al-Shorgani, N. K., M. S. Kalil, and W. M. Yusoff (2012) Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess Biosyst. Eng. 35: 817-826. crossref(new window)

Gopal, B. (1987) Water hyacinth. Elsevier Science Publishers, Amsterdam, Netherlands.

Narain, S., C. S. P. Ojha, S. K. Mishra, U. C. Chaube, and P. K. Sharma (2011) Cadmium and chromium removal by aquatic plant. Int. J. Environ. Sci. 1: 1297-1304.

Kim, B. Y., S. K. Lee, C. S. Kwean, K. H. So, and E. H. Yun (1991) Studies on the purification of sewage water by water hyacinth (Eichhornia crassipes). Korean J. Environ. Agric. 10: 1.

Gunnarsson, C. C. and C. M. Petersen (2007) Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Manage. 27: 117-129. crossref(new window)

Hronich, J. E., L. Martin, J. Plawsky, and H. R. Bungay (2008) Potential of Eichhornia crassipes for biomass refining. J. Ind. Microbiol. Biot. 35: 393-402. crossref(new window)

Mishima, D., M. Tateda, M. Ike, and M. Fujita (2006) Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresource Technol. 97: 2166-2172. crossref(new window)

Girisuta, B., B. Danon, R. Manurung, L. P. B. M. Janssen, and H. J. Heeres (2008) Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid. Bioresource Technol. 99: 8367-8375. crossref(new window)

Nigam, J. (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol. 97: 107-116. crossref(new window)

Mishima, D., M. Kuniki, K. Sei, S. Soda, M. Ike, and M. Fujita (2008) Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresource Technol. 99: 2495-2500. crossref(new window)

Aswathy, U., R. K. Sukumaran, G. L. Devi, K. P. Rajasree, R. R. Singhania, and A. Pandey (2010) Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. Bioresource Technol. 101: 925-930. crossref(new window)

Annous, B., and H. Blaschek (1990) Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microb. 56: 2559-2561.

Lee, K. Y., I. B. Hwang, and T. R. Heo (1997) Enhancement of cultivation efficiency of Bifidobacterium longum using calcium carbonate buffer system. Korean J. Food. Sci. Technol. 29: 126-132.

Tashiro, Y., K. Takeda, G. Kobayashi, K. Sonomoto, A. Ishizaki, and S. Yoshino (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pHstat continuous butyric acid and glucose feeding method. J. Biosci. Bioeng. 98: 263-268. crossref(new window)