JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Formation Mechanism of Aroma Compound during Tea Manufacturing Process
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : KSBB Journal
  • Volume 31, Issue 2,  2016, pp.91-99
  • Publisher : Korean Society for Biotechnology and Bioengineering
  • DOI : 10.7841/ksbbj.2016.31.2.91
 Title & Authors
Formation Mechanism of Aroma Compound during Tea Manufacturing Process
Cho, MiJa; Cho, Gijeong; Choi, HyunSook; Choi, Dubok; Cho, KiAn; Cho, Hoon;
  PDF(new window)
 Abstract
Tea is an aqueous infusion of dried leaves of the plant Camellia sinensis L. and is the second most widely consumed beverage around the world after water. Aroma compounds of tea differ largely depending on the manufacturing process, even from the same categories of different origins. The flavor of tea can be divided into two categories: taste (non-volatile compounds) and aroma (volatile compounds). In the present study, we review the formation mechanism of main aromas generated from carotenoids, lipids, glycosides as precursors, and Maillard reaction during the tea manufacturing process, with biological and chemical mechanisms.
 Keywords
Aroma;Carotenoids;Lipids;Glycosides;Maillard reaction;
 Language
Korean
 Cited by
 References
1.
Graham, P. J (1998) Tea of the Sages: the Art of Sencha, University of Hawaii Press, Honolulu. USA. pp. 33-39.

2.
Li, S., C. Y. Lo, M. H. Pan, C. S. Lai, and C. T. Ho (2013) Black tea: chemical analysis and stability. Food Func. 4: 4-10.

3.
Pan, M. H., C. S. Lai, H. Wang, C. Y. Lo, C. T. Ho, and S. L. Lai (2013) Black tea in chemoprevention of cancer and other human diseases. Food Sci. 2: 12-31.

4.
Constantinides, S. M., R. Hoover, and P. A. Karakoltsidis (1995) Tea. Food. Rev. Int. 11: 371-542. crossref(new window)

5.
Robinson, J. M. and P. O. Owuor (1992) Tea, in: K. C. Wilson, M. N. Clifford (Eds.) Tea: Cultivation to Consumption, Chapman & Hall, London, UK. pp. 603-647.

6.
Winterhalter, P (2000) Carotenoid-derived aroma compounds. An overview. In: Abstracts of paper of the American Chemical Society, NY, USA. pp. U25-26.

7.
Sanderson, G. W. and H. N. Grahamm (1973) Formation of black tea aroma. J. Agric. Food Chem. 21: 576-585. crossref(new window)

8.
Roberts, D. D., A. P. Mordehai, and T. E. Acree (1994) Detection and partial characterization of eight beta-damascenone precursors in apples. J. Agric. Food Chem. 42: 345-349. crossref(new window)

9.
Huang, F. C., G. Horvath, P. Molnar, E. Turcsi, J. Deli, J. Schrader, G. Sandmann, H. Schmidt, and W. Schwab (2009) Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascene. Phytochemistry 70: 457-464. crossref(new window)

10.
Kanasawud, P. and J.C. Crouzet (1990) Mechanism of formation of volatile compounds by thermal degradation of carotenoids in aqueous medium. J. Agric. Food Chem. 38: 237-243.

11.
Baldermann, S., M. Kato, and M. Kurosawa (2010) Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. J. Exp. Bot. 61: 2967- 2977. crossref(new window)

12.
Kawakami, M. and A. Kobayashi (2000) Carotenoid-derived aroma compounds in tea. In: Abstracts of paper of the American Chemical Society, NY, USA. pp. U32-33.

13.
Coggon, P., L. J. Romanczyk, and G.W. Sanderson (1977) Extraction, purification, and partial characterization of a tea metalloprotein and its role in the formation of black tea aroma constituents. J. Agric. Food Chem. 25: 278-283. crossref(new window)

14.
Takeo. T. and T. Tsushida (1980) Changes in lipoxygenase activity in relation lipid degradation in plucked tea shoots. Phytochemistry 19: 2521-2522. crossref(new window)

15.
Hatanaka, A., T. Kajiwara, and K. Matsui (1995) The biogeneration of green odor by green leaves and its physiological functions. J. Nature Res. 50: 467-472.

16.
Yang, Z., S. Baldermann, and N. Watanabe (2013) Recent studies of the volatile compounds in tea. Food Res. Int. 53: 585-599. crossref(new window)

17.
Cheng, Y., T. Huynh-Ba, I. Blank, and F. Robert (2008) Temporal changes in aroma release of Longjing tea infusion: interaction of volatile and nonvolatile tea components and formation of 2-butyl-2-octenal upon aging. J. Agric. Food Chem. 56: 2160-2169. crossref(new window)

18.
Mosblech, A., I. Feussner, and I. Heilmann (2009) Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 47: 511-517. crossref(new window)

19.
Cheong, J. J. and Y. D. Choi (2003) Methyl jasmonate as a vital substance in plants. Trends Genet. 19: 409-413. crossref(new window)

20.
Su, E. Z., T. Xia, L. P. Gao, and Z. Zhang (2010) Immobilization of beta-glucosidase and its aroma-increasing effect on tea beverage. Food Bioprod. Process. 88: 83-89. crossref(new window)

21.
Takeo. T. (1981) Black tea aroma and its formation. Part 2. Variation in amounts of linalool and geraniol produced in tea shoots by mechanical injury. Phytochemistry 20: 2149-2151. crossref(new window)

22.
Gunstone, F. D., J. L. Harwood, and F. B. Padley (1984) The Lipid Handbook, 2nd ed., Chapman and Hall, New York, USA. pp. 54-65.

23.
Moon, J. H., N. Watanabe, and K. Sakata (1994) Studies on the aroma formation mechanism of Oolong tea. Biosci. Biotechnol. Biochem. 58: 1742-1744. crossref(new window)

24.
Wang, D., T. Yoshimura, and K. Kubota (1999) Analysis of glycosidically bound aroma precursors in tea leaves. Biosci. Biotechnol. Biochem. 63: 1631-1633. crossref(new window)

25.
Kinugasa, H. and T. Takeo (1990) Deterioration mechanism for tea infusion aroma by retort pasteurization. Agr. Biol. Chem. 54: 2537- 2542.

26.
Roscher, R., G. Bringmann, P. Schreier, and W. Schwab (1998) Radiotracer studies on the formation of 2,5-dimethyl-4-hydroxy-3(2H)-furanone in detached ripening strawberry fruits. J. Agric. Food Chem. 46: 1488-1493. crossref(new window)

27.
Zhou, Y., F. Dong, A. Kunimasa, Y. Zhang, S. Cheng, J. Lu, L. Zhang, A. Murata, F. Mayer, P. Fleischmann, N. Watanabe, and Z. Yang (2014) Occurrence of glycosidically conjugated 1-phenylethanol and its hydrolase primeverosidase in tea (Camellia sinensis) flowers. J. Agric. Food Chem. 62: 8042-8050. crossref(new window)

28.
Yang, Z., T. Kinoshita, A. Tanida, H. Sayama, A. Morita, and N. Watanabe (2009) Analysis of coumarin and its glycosidically bound precursor in Japanese green tea having sweet-herbaceousodour. Food Chem. 114: 289-294. crossref(new window)

29.
Kinoshita, T., S. Hirata, Z. Yang, S. Baldermann, E. Kitayama, S. Matsumoto, M. Suzuki, P. Fleischmann, P. Winterhalter, and N. Watanabe (2010) Formation of damascenone derived from glycosidically bound precursors in green tea infusions. Food Chem. 123: 601-606. crossref(new window)

30.
Tsuge, S., H. Ohtani, and C. Watanabe (2011) Pyrolysis-GC/MS data book of syn-thetic polymers: pyrograms, thermograms and MS of pyrolyzates, 1st ed., Elsevier, Amsterdam, Netherlands, pp. 112-132.

31.
Vanderhaegen, B., H. Neven, H. Verachtert, and G. Derdelinckx (2006) The chemistry of beer aging. Food Chem. 95: 357-381. crossref(new window)

32.
Yaylayan, V.A. (2003) Recent advances in the chemistry of Strecker degradation and Amadori rearrangement. Food Sci.Tech. Res. 1: 1-6.

33.
Zhen, Y. S., Z. Chen, and S. J. Cheng (2002) Tea: Bioactivity and the rapeutic Potential, Taylor & Francis, New York, USA. pp. 22-29.

34.
Tu, Y., X. Yang, S. Zhang, and Y. Zhu (2012) Determination of theanine and gamma-aminobutyric acid in tea by high performanceliquid chromatography with precolumn derivatization. Chinese J. Chromatogr. 30: 184-189.

35.
Gijs, L., P. Perpete, A. Timmermans, and S. Collin (2000) 3-Methylthiopropionaldehydeas precursor of dimethyl trisulfide in aged beers. J. Agric. Food Chem. 48: 6196-6199. crossref(new window)

36.
Hofmann, T. and P. Schieberle (1998) 2-Oxopropanal, hydroxy-2-propanone, and 1-pyrroline Important intermediates in the generation of the roast-smelling food flavor compounds 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine. J. Agric. Food Chem. 46: 2270-2277. crossref(new window)

37.
Adams, A. and N. de Kimpe (2006) Chemistry of 2-acetyl-1-pyrroline, 6-acetyl-1,2,3,4-tetrahydropyridine, 2-acetyl-2-thiazoline, and 5-acetyl-2,3-dihydro-4H-thiazine: extraordinary Maillard flavor compounds. Chem. Rev. 106: 2299-2319. crossref(new window)

38.
Yvon, M. and L. Rijnen (2001) Cheese flavour formation by amino acid catabolism. Int. Dairy J. 11: 185-201. crossref(new window)

39.
Song, D. U., Y. D. Jung, K. O. Chay, M. A. Chung, K. H. Lee, S. Y. Yang, B. A. Shin, and B. W. Ahn (2002) Effect of drinking green tea onage-associated accumulation of Maillard-type fluorescence and carbonyl groups in rat aortic and skin collagen. Arch. Biochem. Biophys. 397: 424-429. crossref(new window)