JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Trend and issues of the bulk FinFET
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Vacuum Magazine
  • Volume 3, Issue 1,  2016, pp.16-21
  • Publisher : The Korean Vacuum Society
  • DOI : 10.5757/vacmac.3.1.16
 Title & Authors
Trend and issues of the bulk FinFET
Lee, Jong-Ho; Choi, Kyu-Bong;
  PDF(new window)
 Abstract
FinFETs are able to be scaled down to 22 nm and beyond while suppressing effectively short channel effect, and have superior performance compared to 2-dimensional (2-D) MOSFETs. Bulk FinFETs are built on bulk Si wafers which have less defect density and lower cost than SOI(Silicon-On-Insulator) wafers. In contrast to SOI FinFETs, bulk FinFETs have no floating body effect and better heat transfer rate to the substrate while keeping nearly the same scalability. The bulk FinFET has been developed at 14 nm technology node, and applied in mass production of AP and CPU since 2015. In the development of the bulk FinFETs at 10 nm and beyond, self-heating effects (SHE) is becoming important. Accurate control of device geometry and threshold voltage between devices is also important. The random telegraph noise (RTN) would be problematic in scaled FinFET which has narrow fin width and small fin height.
 Keywords
 Language
Korean
 Cited by
 References
1.
J. Kedzierski, P. Xuan, V. Subramanian, E. Anderson, J. Bokor, T.-J. King, and C. Hu, Superlattices and Microstructures 28, 445 (2000). crossref(new window)

2.
T. Low, F. F. Li, C. Shen, Y.-C. Yeo, Y. T. Hou, C. Zhu, A. Chin, and D. L. Kwong, Appl. Phys. Lett. 85, 2402 (2004). crossref(new window)

3.
Y.-K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T.-J. King, J. Bokor, C. Hu, IEDM Tech. Dig. 421 (2001).

4.
B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios, and R. Chau, Tech. Dig. of Symposium on VLSI Tech. 133 (2003).

5.
C. H. Wann, K. Noda, T. Tanaka, M. Yoshida, and C. Hu, IEEE Trans. Electron Devices 43, 1742 (1996). crossref(new window)

6.
H.-S. P. Wong, K. K. Chan, and Y. Taur, IEDM Tech. Dig. 427 (1997).

7.
I. Ferain, C. A. Colinge, and J.-P. Colinge, Nature 479, 310 (2011). crossref(new window)

8.
D. Hisamoto, W.-C. Lee, J. Kedzierski, E. Anderson, H. Takeuchi, K. Asano, T.-J. King, J. Bokor, C. Hu, IEDM Tech. Dig. 1032 (1998).

9.
D. Hisamoto, W.-C. Lee, J. Kedzierski, E. Anderson, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, IEEE Trans. Electron Devices 47, 2320 (2000). crossref(new window)

10.
J.-P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, Kluwer Academic Publishers, Dordrecht, (1991).

11.
T. Park, E. Yoon, and J.-H. Lee, IEEE Physica E 19, 6 (2003). crossref(new window)

12.
T. Park, H. J. Cho, J. D. Choe, S. Y. Han, D. Park, K. Kim, E. Yoon, and J.-H. Lee, IEEE Trans. Electron Devices 53, 481, (2006). crossref(new window)

13.
J.-H. Lee, Nano Devices and Circuit Techniques for low-energy applications and energy harvesting, Springer, 33 (2015)

14.
K. Okano, T. Izumida, H. Kawasaki, A. Kaneko, A. Yagishita, T. Kanemura, M. Kondo, S. Ito, N. Aoki, K. Miyano, T. Ono, K. Yahashi, K. Iwade, T. Kubota, T. Matsushita, I. Mizushima, S. Inaba, K. Ishimaru, K. Suguro, K. Eguchi, Y. Tsunashima, and H. Ishiuchi, IEDM Tech. Dig., 721 (2005).

15.
F. Zhong, A. Sinha, IEDM 52 (2014).

16.
M. Yabuuchi, M. Morimoto, Y. Tsukamoto, S. Tanaka, K. Tanaka, M. Tanaka, K. Nii, IEDM 56 (2014).

17.
C. Liu, H. Nam, K. Kim, S. Choo, H. Kim, H. Kim, Y. Kim, S. Lee, J. Kim, J. J. Kim, L. Hwang, S. Ha, M.-J. Jin, H. C. Sagong, J.-K. Park, S. Pae, J. P, IEDM 277 (2015).

18.
J.-R. Hwang, T.-L. Lee, H.-C. Ma, T.-C. Lee, T.-H. Chung, C.-Y. Chang, S.-D. Liu, B.-C. Perng, J.-W. hsu, M.-Y. Lee, C.-Y. Ting, C.-C. Huang, J.-H. Wang, J.-H. Shieh, and F.-L. Yang, IEDM Tech. Dig., 154 (2005)

19.
E. S. Cho, T.-Y. Kim, B. K. Cho, C.-H. Lee, J. J. Lee, A. Fayrushin, C. Lee, D. Park, and B.-I. Ryu, Symp. On VLSI Tech. Dig., 90 (2006).

20.
C. Lee, J.-M. Yoon, C.-H. Lee, J. C. Park, T. Y. Kim, H. S. Kang, S. K. Sung, E. S. Cho, H. J. Cho, Y. J. Ahn, D. Park, K. Kim, and B.-I. Ryu, IEDM Tech. Dig., 61 (2004).

21.
D.-H. Lee, S.-G. Lee, J. R. Yoo, G.-H. Buh, G. H. Yon, D.-W. Shin, D. K. Lee, H.-S. Byun, I. S. Jung, T.-S. Park, Y. G. Shin, S. Choi, U.-I. Chung, J.-T. Moon, and B.-I. Ryu, Symp. On VLSI Tech. Dig., 164 (2007)

22.
http://newsroom.intel.com/docs/DOC-2032

23.
S. Natarajan, et al., IEDM 71 (2014).

24.
http://www.samsung.com/semiconductor/insights/news/24581

25.
C. Y. Kang, C. Sohn, R.-H. Baek, C. Hobbs, P. Kirsch, R. Jammy, Symp. On VLSI Tech. Dig. 90 (2013).

26.
K.-I Seo, et al., Symp. On VLSI Tech. Dig. 1-2 (2014).

27.
S. Gupta, V. Moroz, L. Smith, Q. Lu, K. C. Saraswat, IEDM Tech. Dig. 641 (2013).

28.
G. Eneman, G. Hellings, A. De Keersgieter, N. Collaert, A. Thean, IEDM Tech. Dig. 320 (2013).

29.
D. Jang, E. Bury, R. Ritzenthaler, M. G. Bardon, T. Chiarella, K. Miyaguchi, P. Raghavan, A. Mocuta, G. Groeseneken, A. Mercha, D. Verkest, A. Thean, IEDM 289 (2015).

30.
K.-B. Choi, J. Shin, J.-H. Lee, J. Nanosci. Nanotechno. (to be published).