Advanced SearchSearch Tips
Introduction to research of atomically thin MoS2 and its electrical properties
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Vacuum Magazine
  • Volume 3, Issue 1,  2016, pp.9-15
  • Publisher : The Korean Vacuum Society
  • DOI : 10.5757/vacmac.3.1.9
 Title & Authors
Introduction to research of atomically thin MoS2 and its electrical properties
Lee, Takhee; Kim, Tae-Young; Cho, Kyungjune; Pak, Jinsu;
  PDF(new window)
Molybdenum disulfide (), which has 0.65 nm-thick atomic layer, can be easily separated layer by layer due to weak van der Waals interactions in out-of-plane direction. (), has a good potential in nanoelectronics, because it has high electrical mobility and On/Off ratio. Its band gap energy changes from indirect to direct band gap energy as it goes from bulk to monolayer. Therefore, atomically thin (), is widely studied in academic and engineering fields. Here, we introduce the research of atomically thin and discuss the research directions.
 Cited by
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotech. 6, 147 (2011). crossref(new window)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010). crossref(new window)

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011). crossref(new window)

W. Park, J. Park, J. Jang, H. Lee, H. Jeong, K. Cho, S. Hong, and T. Lee, Nanotechnology 24, 095202 (2013). crossref(new window)

K. Cho, W. Park, J. Park, H. Jeong, J. Jang, T.-Y. Kim, W. K. Hong, S. Hong, and T. Lee, ACS Nano 7, 7751 (2013). crossref(new window)

J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, J. A. Felix, P. E. Dodd, P. Paillet, and V. Ferlet-Cavrois, IEEE Trans. Nucl. Sci. 55, 1833 (2008). crossref(new window)

T.-Y. Kim, K. Cho, W. Park, J. Park, Y. Song, S. Hong, W.-K. Hong, and T. Lee, ACS Nano 8, 2774 (2014). crossref(new window)

K. Cho, T.-Y. Kim, W. Park, J. Park, D. Kim, J. Jang, H. Jeong, S. Hong, and T. Lee, Nanotechnology 25, 155201 (2014). crossref(new window)

J. Pak, J. Jang, K. Cho, T.-Y. Kim, J.-K. Kim, Y. Song, W.-K. Hong, M. Min, H. Lee, and T. Lee, Nanoscale 7, 18780 (2015). crossref(new window)

H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song et al., Nat. Commun. 4, 2642 (2013). crossref(new window)

K. Cho, M. Min, T.-Y. Kim, H. Jeong, J. Pak, J.-K. Kim, J. Jang, S. J. Yoon, Y. H. Lee, W.-K. Hong, and T. Lee, ACS Nano 9, 8044 (2015). crossref(new window)

Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Adv. Mater. 24, 2320 (2012). crossref(new window)

W. Park, J. Baik, T.-Y. Kim, K. Cho, W.-K. Hong, H.-J. Shin, and T. Lee, ACS Nano 8, 4961 (2014). crossref(new window)

T.-Y. Kim, M. Amani, G. H. Ahn, Y. Song, A. Javey, S. Chung, and T. Lee, ACS Nano 10, 2819 (2016). crossref(new window)

M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. KC, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager III, X. Zhang, E. Yablonovitch, and A. Javey, Science 350, 1065 (2015). crossref(new window)