JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of mixed contents of carbon nanoreinforcements on the impact resistance of epoxy-based nanocomposites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of mixed contents of carbon nanoreinforcements on the impact resistance of epoxy-based nanocomposites
Ayatollahi, M.R.; Naeemi, A.R.; Alishahi, E.;
 Abstract
The impact behavior of epoxy-based nanocomposites reinforced with carbon nano tube (CNT), carbon nano fiber (CNF) and mixed contents of these nanoparticles was investigated using Izod impact test. The results showed that while the impact strength of nanocomposites containing 1 wt% of CNT and 1 wt% of CNF increased 19% and 13% respectively, addition of mixed contents of these nanofillers (0.5-0.5 wt%) demonstrated higher improvement (21%) in the impact resistance. The trend of the results is explained on the basis of different fracture mechanisms of nanocomposites. Furthermore, the fracture surface of specimens and the dispersion state of nanoenhancers have been studied using scanning electron microscopy (SEM) photographs.
 Keywords
nano-structures;resins;impact behavior;mechanical testing;
 Language
English
 Cited by
 References
1.
Al-Saleh, M.H. and Sundararaj, U. (2011), "Review of the mechanical properties of carbon nanofiber/ polymer composites", Compos. Part A, Appl. Sci. Manuf., 42, 2126-2142. crossref(new window)

2.
Alishahi, E., Shadlou, S., Doagou, R.S. and Ayatollahi, M.R. (2013), "Effects of carbon nanoreinforcements of different shapes on the mechanical properties of epoxy-based nanocomposites", Macromol. Mater. Eng., 298, 670-678. crossref(new window)

3.
Ayatollahi, M.R., Alishahi, E. and Shadlou, S. (2011a), "Mechanical Behavior of Nanodiamond/Epoxy Nanocomposites", Int. J. Fract., 170, 95-100. crossref(new window)

4.
Ayatollahi, M.R., Shadlou, S. and Shokrieh, M.M. (2011b), "Correlation between aspect ratio of MWCNTs and mixed mode fracture of epoxy based nanocomposites", Mater. Sci. Eng.: A, 528, 6173-6178. crossref(new window)

5.
Ayatollahi, M.R., Shadlou, S. and Shokrieh, M.M. (2011c), "Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions", Mater. Des., 32, 2115-2124. crossref(new window)

6.
Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M. and Chitsazzadeh, M. (2011d), "Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites", Polym. Test., 30, 548-556. crossref(new window)

7.
Ayatollahi, M.R., Shadlou, S. and Shokrieh, M.M. (2011e), "Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites", Eng. Fract. Mech., 78, 2620-2632. crossref(new window)

8.
Bortz, D.R., Merino, C. and Martin-Gullon, I. (2011), "Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system", Compos. Sci. Tech., 71, 31-38. crossref(new window)

9.
Chen, J., Kinloch, A.J., Sprenger, S. and Taylor, A.C. (2013), "The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles", Polym., 54, 4276-4289. crossref(new window)

10.
Deng, S., Zhang, J., Ye, L. and Wu, J. (2008), "Toughening epoxies with halloysite nanotubes", Polym., 49, 5119-5127. crossref(new window)

11.
Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A: Appl. Sci. Manuf., 36, 1555-1561. crossref(new window)

12.
Geng, Y., Liu, M.Y., Li, J., Shi, X.M. and Kim, J.K. (2008), "Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites", Compos. Part A: Appl. Sci. Manuf., 39, 1876-1883. crossref(new window)

13.
Hedia, H.S., Allie, L., Ganguli, S. and Aglan, H. (2006), "The influence of nanoadhesives on the tensile properties and Mode-I fracture toughness of bonded joints", Eng. Fract. Mech., 73, 1826-1832. crossref(new window)

14.
Hirsch, A. and Vostrowsky, O. (2005), Functionalization of Carbon Nanotubes, Springer Berlin Heidelberg.

15.
Hsieh, T.H., Kinloch, A.J., Masania, K., Taylor, A.C. and Sprenger, S. (2010), "The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles", Polym., 51, 6284-6294. crossref(new window)

16.
Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C. and Sprenger, S. (2007), "Toughening mechanisms of nanoparticle-modified epoxy polymers", Polym., 48, 530-541. crossref(new window)

17.
Mimura, K., Ito, H. and Fujioka, H. (2001), "Toughening of epoxy resin modified with in situ polymerized thermoplastic polymers", Polym., 9223-9233.

18.
Kinloch, A.J. and Taylor, A.C. (2006), "The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites", J. Mater. Sci., 41, 3271-3297. crossref(new window)

19.
Laurenzi, S., Pastore, R., Giannini, G. and Marchetti, M. (2013), "Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy", Compos. Struct., 99, 62-68. crossref(new window)

20.
Lee, J. and Yee, A.F. (2001), "Inorganic particle toughening II toughening mechanisms of glass bead filled epoxies", Polym., 42, 589-597. crossref(new window)

21.
Liang, Y.L. and Pearson, R.A. (2010), "The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites (HESRNs)", Polym., 51, 4880-4890. crossref(new window)

22.
Liu, L. and Wagner, H.D. (2005), "Rubbery and glassy epoxy resins reinforced with carbon nanotubes", Compos. Sci. Tech., 65, 1861-1868. crossref(new window)

23.
Luo, D., Wang, W.X. and Takao, Y. (2007), "Effects of the distribution and geometry of carbon nanotubes on the macroscopic stiffness and microscopic stresses of nanocomposites", Compos. Sci. Tech., 67, 2947-2958. crossref(new window)

24.
Ma, P.C., Mo, S.Y., Tang, B.Z. and Kim, J.K. (2010a), "Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites", Carbon, 48, 1824-1834. crossref(new window)

25.
Ma, P.C., Siddiqui, N.A., Marom, G. and Kim, J.K. (2010b), "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review", Compos. Part A: Appl. Sci. Manuf., 41, 1345-1367. crossref(new window)

26.
Miyagawa, H. and Drzal, L.T. (2005), "Effect of oxygen plasma treatment on mechanical properties of vapor grown carbon fiber nanocomposites", Compos. Part A: Appl. Sci. Manuf., 36, 1440-1448. crossref(new window)

27.
Roy, N., Sengupta, R. and Bhowmick, A.K. (2012), "Modifications of carbon for polymer composites and nanocomposites", Prog. Polym. Sci., 37, 781-819. crossref(new window)

28.
Seshadri, M. and Saigal, S. (2007), "Crack Bridging in Polymer Nanocomposites", J. Eng. Mech., 133, 911-918. crossref(new window)

29.
Shadlou, S., Alishahi, E. and Ayatollahi, M.R. (2013), "Fracture behavior of epoxy nanocomposites reinforced with different carbon nano-reinforcements", Compos. Struct., 95, 577-581. crossref(new window)

30.
Song, Y.S. and Youn, J.R. (2005), "Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites", Carbon, 43, 1378-1385. crossref(new window)

31.
Sui, G., Zhong, W.H., Liu, M.C. and Wu, P.H. (2009), "Enhancing mechanical properties of an epoxy resin using "liquid nano-reinforcements", Mater. Sci. Eng. A, 512, 139-142. crossref(new window)

32.
Wagner, H.D., Ajayan, P.M. and Schulte, K. (2013), "Nanocomposite toughness from a pull-out mechanism", Compos. Sci. Tech., 83, 27-31. crossref(new window)

33.
Wang, X., Jin, J. and Song, M. (2013), "An investigation of the mechanism of graphene toughening epoxy", Carbon, 65, 324-333. crossref(new window)

34.
Wetzel, B., Haupert, F. and Qiu Zhang, M. (2003), "Epoxy nanocomposites with high mechanical and tribological performance", Compos. Sci. Tech., 63, 2055-2067. crossref(new window)

35.
Wetzel, B., Rosso, P., Haupert, F. and Friedrich, K. (2006), "Epoxy nanocomposites-fracture and toughening mechanisms", Eng. Fract. Mech., 73, 2375-2398. crossref(new window)

36.
Zhang, H. and Zhang, Z. (2007), "Impact behaviour of polypropylene filled with multi-walled carbon nanotubes", Eur. Polym. J., 43, 3197-3207. crossref(new window)

37.
Zhang, W., Picu, R.C. and Koratkar, N. (2008), "The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites", Nanotechnology, 19, 285709. crossref(new window)

38.
Zhao, S., Schadler, L., Duncan, R., Hillborg, H. and Auletta, T. (2008a), "Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy", Compos. Sci. Tech., 68, 2965-2975. crossref(new window)

39.
Zhou, Y., Pervin, F., Lewis, L. and Jeelani, S. (2008b), "Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes", Mater. Sci. Eng.: A, 475, 157-65. crossref(new window)