JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Disturbance due to internal heat source in thermoelastic solid using dual phase lag model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Disturbance due to internal heat source in thermoelastic solid using dual phase lag model
Ailawalia, Praveen; Singla, Amit;
 Abstract
The dual-phase lag heat transfer model is employed to study the problem of isotropic generalized thermoelastic medium with internal heat source. The normal mode analysis is used to obtain the exact expressions for displacement components, force stress and temperature distribution. The variations of the considered variables through the horizontal distance are illustrated graphically. The results are discussed and depicted graphically.
 Keywords
dual-phase-lag model;thermoelasticity;temperature distribution;normal-mode;
 Language
English
 Cited by
1.
Thermal stresses in a non-homogeneous orthotropic infinite cylinder,;

Structural Engineering and Mechanics, 2016. vol.59. 5, pp.841-852 crossref(new window)
1.
Thermal stresses in a non-homogeneous orthotropic infinite cylinder, Structural Engineering and Mechanics, 2016, 59, 5, 841  crossref(new windwow)
 References
1.
Banerjee, M.K. (2015), "Microstructural engineering of dual phase steel to aid in bake hardening", Adv.Mater. Res., 4(1), 1-12. crossref(new window)

2.
Biot, M.N. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. crossref(new window)

3.
Chadwick, P. (1960), In Progress In Solid Mechanics, Vol. I, Eds. R. Hill and I.N. Sneddon, North Holland, Amsterdam.

4.
Chakravorty, S. and Chakravorty, A. (1998), "Transient disturbances in a relaxing thermoelastic half space due to moving stable internal heat source", Int. J. Math. Math. Sci., 21, 595-602. crossref(new window)

5.
Chandrasekharaiah, D.S. (1986), "Thermo-elasticity with second sound", Appl. Mech. Rev., 39(3), 355-375. crossref(new window)

6.
Chandrasekharaiah, D.S. (1998), "Hyperbolic thermo-elasticity: a review of recent literature", Appl. Mech. Rev., 51(12), 705-729. crossref(new window)

7.
Chandrasekharaiah, D.S and Murthy, H.N. (1993), "Thermoelastic interactions in an unbounded body with a spherical cavity", J. Therm. Stress., 16, 55-70. crossref(new window)

8.
Chandrasekharaiah, D.S. and Srinath, K.S. (1996), "One-dimensional waves in a thermoelastic half-space without energy dissipation", Int. J. Eng. Sci., 34(13), 1447-1455. crossref(new window)

9.
Dhaliwal, R.S and Rokne, J.G. (1988), "One-dimensional generalized thermo-elastic problem for a half-space", J. Therm. Stress., 11, 257-271. crossref(new window)

10.
Dhaliwal, R.S. and Rokne, J.G. (1989), "One-dimensional thermal shock problem with two relaxation times", J. Therm. Stress., 12, 259-279. crossref(new window)

11.
El-Karamany, A.S. and Ezzat, M.A. (2014), "On the dual phase-lag thermoelasticity theory", Meccanica, 49, 79-89. crossref(new window)

12.
Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elasticity, 2(1), 1-7. crossref(new window)

13.
Green, A.E. and Naghdi, P.M. (1977), "On thermodynamics and the nature of the second law", Proc. R. Soc. Lond. A, 357, 253-270. crossref(new window)

14.
Green, A.E. and Naghdi, P.M. (1992), "On undamped heat waves in an elastic solid", J. Therm. Stress., 15, 253-264. crossref(new window)

15.
Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31(3), 189-208. crossref(new window)

16.
Ignaczak, J. (1989), In Thermal Stresses, Vol. III, Chap. 4, Ed. R.B. Hetnarski, Elsevier, Oxford.

17.
Kaminski, W. (1990), "Hyperbolic heat conduction equation for materials with a non-homogenous inner structure", J. Heat Transf., 112, 555-560. crossref(new window)

18.
Kothari, S. and Mukhopadhyay, S. (2013), "Some theorems in linear thermoelasticity with dual phase-lags for an anisotropic medium", J. Thermal. Stress., 36, 985-1000. crossref(new window)

19.
Kumar, R. and Devi, S. (2008), "Thermomechanical interactions in porous generalized thermoelastic material permeated with heat source", Multidisc. Model. Mater. Struct., 4, 237-254. crossref(new window)

20.
Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. crossref(new window)

21.
Lotfy, K. (2010), "Transient disturbance in a half-space under generalized magneto-thermoelasticity with a stable internal heat source under three theories", Multidisc. Model. Mater. Struct., 7, 73-90.

22.
Lotfy, K. (2011), "Transient thermo-elastic disturbances in a visco-elastic semi-space due to moving internal heat source", Int. J. Struct. Intg., 2, 264 - 280. crossref(new window)

23.
Mitra, K., Kumar, S. and Vedaverz, A. (1995), "Experimental evidence of hyperbolic heat conduction in processed meat", J. Heat Transf., 117, 568-573. crossref(new window)

24.
Othman, M.I.A. (2011), "State space approach to the generalized thermoelastic problem with temperature-dependent elastic moduli and internal heat sources", J. Appl. Mech. Tech., 52, 644-656. crossref(new window)

25.
Ozisik, M.N. and Tzou, D.Y. (1994), "On the wave theory of heat conduction", J. Heat Transf., ASME, 116, 526-535. crossref(new window)

26.
Roy Chaudhuri, S.K. and Debnath, L. (1983), "Magneto- thermo-elastic plane waves in rotating media", Int. J. Eng. Sci., 21(2), 155-163. crossref(new window)

27.
Roy Chaudhuri, S.K. (1984), "Electro-megneto-thermo-elastic plane waves in rotating media with thermal relaxation", Int. J. Eng. Sci., 22(5), 519-530. crossref(new window)

28.
Roy Chaudhuri, S.K. (1985), "Effect of rotation and relaxation times on plane waves in generalized thermoelasticity", J. Elasticity, 15(1), 59-68. crossref(new window)

29.
Roy Chaudhuri, S.K. (1987), "On magneto thermo-elastic plane waves in infinite rotating media with thermal relaxation", Proceedings Of The IUTAM Symposium On The Electromagnetomechanical Interactions In Deformable Solids and Structures, Tokyo.

30.
Roy Chaudhuri, S.K. (1990), "Magneto-thermo-micro-elastic plane waves in finitely conducting solids with thermal relaxation", Proceedings of the IUTAM Symposium On Mechanical Modeling of New Electromagnetic Materials, Stockholm.

31.
Roy Chaudhuri, S.K. and Dutta, P.S. (2005), "Thermo-elastic interaction without energy dissipation in an infinite solid with distributed periodically varing heat sources", Int. J. Solid. Struct., 42(14), 4192-4203. crossref(new window)

32.
Roy Chaudhuri, S.K. and Bandyopadhyay, N. (2005), "Thermoelastic wave propagation in a rotating elastic medium without energy dissipation", Int. J. Math. Math. Sci., 1, 99-107.

33.
Roy Chaudhuri, S.K. and Banerjee, M. (2004), "Magnetoelastic plane waves in rotating media in thermoelasticity of Type II(G-N model)", Int. J. Math. Math. Sci., 71, 3917-3929.

34.
Tzou, D.Y. (1995), "Experimental support for the lagging behaviour in heat propagation", J. Thermophys. Heat Transf., 9(4), 686-693. crossref(new window)

35.
Tzou, D.Y. (1995), "A unified approach for heat conduction from macro to microscale", J. Heat Transf., 117, 8-16. crossref(new window)