JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Free vibration analysis of edge cracked symmetric functionally graded sandwich beams
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Free vibration analysis of edge cracked symmetric functionally graded sandwich beams
Cunedioglu, Yusuf;
 Abstract
In this study, free vibration analysis of an edge cracked multilayered symmetric sandwich beams made of functionally graded materials are investigated. Modelling of the cracked structure is based on the linear elastic fracture mechanics theory. Material properties of the functionally graded beams change in the thickness direction according to the power and exponential laws. To represent functionally graded symmetric sandwich beams more realistic, fifty layered beam is considered. Composition of each layer is different although each layer is isotropic and homogeneous. The considered problem is carried out within the Timoshenko first order shear deformation beam theory by using finite element method. A MATLAB code developed to calculate natural frequencies for clamped and simply supported conditions. The obtained results are compared with published studies and excellent agreement is observed. In the study, the effects of crack location, depth of the crack, power law index and slenderness ratio on the natural frequencies are investigated.
 Keywords
functionally graded materials;cracked beam;free vibration;FEM;
 Language
English
 Cited by
1.
A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates,;;;;

Steel and Composite Structures, 2016. vol.22. 3, pp.473-495 crossref(new window)
2.
Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory,;;;;

Wind and Structures, 2016. vol.22. 4, pp.429-454 crossref(new window)
3.
Thermal stability of functionally graded sandwich plates using a simple shear deformation theory,;;;;

Structural Engineering and Mechanics, 2016. vol.58. 3, pp.397-422 crossref(new window)
1.
Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory, Wind and Structures, 2016, 22, 4, 429  crossref(new windwow)
2.
A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates, Steel and Composite Structures, 2016, 22, 3, 473  crossref(new windwow)
3.
Thermal stability of functionally graded sandwich plates using a simple shear deformation theory, Structural Engineering and Mechanics, 2016, 58, 3, 397  crossref(new windwow)
 References
1.
Akbas, S.D. (2013), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Math. Prob. Eng., Article ID 871815, 14.

2.
Akbas, S.D. (2013), "Free vibration characteristics of edge cracked functionally graded beams by using finite element method", IJETT, 4(10), 4590-4597.

3.
Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. crossref(new window)

4.
Aydin, K. (2013), "Free vibration of functionally graded beams with arbitrary number of surface cracks", Eur. J. Mech. A-Solid., 42, 112-124. crossref(new window)

5.
Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. crossref(new window)

6.
Cunedioglu, Y. and Beylergil, B. (2014), "Free vibration analysis of laminated composite beam under room and high temperatures", Struct. Eng. Mech., 51(1), 111-130. crossref(new window)

7.
Demir, E., Callioglu, H. and Sayer, M. (2013), "Free vibration of symmetric FG sandwich Timoshenko beam with simply supported edges", Indian J. Eng. Mater. S, 20(6), 515-521.

8.
Elishakoff, I. and Candan, S. (2001), "Apparently first closed-form solution for vibrating: inhomogeneous beams", Int. J. Solid. Struct., 38(19), 3411-3441. crossref(new window)

9.
Ferezqi, H.Z., Tahani, M. and Toussi, H.E. (2010), "Analytical approach to free vibrations of cracked Timoshenko beams made of functionally graded materials", Mech. Adv. Mater. Struct., 17(5), 353-365. crossref(new window)

10.
Gibson, R.F. (1994), Principles of Composite Materials, First Edition, McGraw-Hill, New York.

11.
Giunta, G., Crisafulli, D., Belouettar, S. and Carrera, E. (2011), "Hierarchical theories for the free vibration analysis of functionally graded beams", Compos. Struct., 94(1), 68-74. crossref(new window)

12.
Ke, L.L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009), "Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials", Mech. Adv. Mater. Struct., 16(6), 488-502. crossref(new window)

13.
Kisa, M. (2004), "Free vibration analysis of a cantilever composite beam with multiple cracks", Compos. Sci. Technol., 64(9), 1391-1402. crossref(new window)

14.
Kisa, M. and Brandon, J. (2000), "The effects of closure of cracks on the dynamics of a cracked cantilever beam", J. Sound. Vib., 238(1), 1-18. crossref(new window)

15.
Kisa, M., Brandon, J. and Topcu, M. (1998), "Free vibration analysis of cracked beams by a combination of finite elements and component mode synthesis methods", Comput. Struct., 67(4), 215-223. crossref(new window)

16.
Kitipornchai, S., Ke, L.L., Yang, J. and Xiang, Y. (2009), "Nonlinear vibration of edge cracked functionally graded Timoshenko beams", J. Sound. Vib., 324(3-5), 962-982. crossref(new window)

17.
Li, S., Hu, J.J., Zhai, C.H. and Xie, L.L. (2013), "A unified method for modeling of axially and/or transversally functionally graded beams with variable cross-section profile", Mech. Bas. Des. Struc., 41(2), 168-188. crossref(new window)

18.
Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. crossref(new window)

19.
Matbuly, M.S., Ragb, O. and Nassar, M. (2009), "Natural frequencies of a functionally graded cracked beam using the differential quadrature method", Appl. Math. Comput., 215(6), 2307-2316. crossref(new window)

20.
Petyt, M. (1990), Introduction toFfinite Element Vibration Analysis, First Edition, Cambridge University Press, Cambridge.

21.
Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B-Eng., 51, 175-184. crossref(new window)

22.
Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S. (2011), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", Compos. Part B-Eng., 42(4), 801-808.

23.
Simsek, M., Kocaturk, T. and Akbas, S.D. (2012), "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", Compos. Struct., 94(8), 2358-2364. crossref(new window)

24.
Su, H. and Banerjee, J.R. (2015), "Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams", Comput. Struct,. 147, 107-116. crossref(new window)

25.
Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. crossref(new window)

26.
Wattanasakulpong, N., Prusty, G.B. and Kelly, D.W. (2013), "Free and forced vibration analysis using improved third-order shear deformation theory for functionally graded plates under high temperature loading", J. Sandw. Struct. Mater., 15(5), 583-606. crossref(new window)

27.
Wei, D., Liu, Y.H. and Xiang, Z.H. (2012), "An analytical method for free vibration analysis of functionally graded beams with edge cracks", J. Sound Vib., 331(7), 1686-1700. crossref(new window)

28.
Yan, T., Kitipornchai, S. and Yang, J. (2011), "Parametric instability of functionally graded beams with an open edge crack under axial pulsating excitation", Compos. Struct., 93(7), 1801-1808. crossref(new window)

29.
Yan, T., Kitipornchai, S., Yang, J. and He, X.Q. (2011), "Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load", Compos. Struct., 93(11), 2992-3001. crossref(new window)

30.
Yan, T. and Yang, J. (2011), "Forced vibration of edge-cracked functionally graded beams due to a transverse moving load", Procedia Eng., 14, 3293-3300. crossref(new window)

31.
Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. crossref(new window)