JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Hygrothermal effects on the vibration and stability of an initially stressed laminated plate
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Hygrothermal effects on the vibration and stability of an initially stressed laminated plate
Wang, Hai; Chen, Chun-Sheng; Fung, Chin-Ping;
 Abstract
The influence of hygrothermal effects on the vibration frequency and buckling load of a shear deformable composite plate with arbitrary initial stresses was investigated. The governing equations of the effects of humid, thermal and initial stresses are established using the variational method. The material properties of the composite plate are affected by both temperature and moisture. The initial stress is taken to be a combination of uniaxial load and pure bending in a hygrothermal environment. The influence of various parameters, such as the fiber volume fraction, temperature, moisture concentration, length/thickness ratios, initial stresses and bending stress ratio on the vibration and stability of the response of a laminated plate are studied in detail. The behavior of vibration and stability are sensitive to temperature, moisture concentration, fiber volume fraction and initial stresses.
 Keywords
hygrothermal effect;laminated plates;initial stress;
 Language
English
 Cited by
1.
A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates, Composite Structures, 2017, 182, 533  crossref(new windwow)
 References
1.
Adams, D.F. and Miller, A.K. (1977), "Hygrothermal microstresses in a unidirectional composite exhibiting inelastic materials behavior", J. Compos. Mater., 11, 285-299. crossref(new window)

2.
Bahrami, A. and Nosier, A. (2007), "Interlaminar hygrothermal stresses in laminated plates", Int. J. Solid. Struct., 44, 8119-8142. crossref(new window)

3.
Bowles, D.E. and Tompkins, S.S. (1989), "Prediction of coefficients of thermal expansion for unidirectional composites", J. Compos. Mater., 23, 370-381. crossref(new window)

4.
Brunell, E.J. and Robertson, S.R. (1974), "Initially stressed Mindlin plates", AIAA J., 12, 1036-1045. crossref(new window)

5.
Chen, C.S., Fung, C.P. and Chien, R.D. (2006), "A further study on nonlinear vibration of initially stressed plates", Appl. Math. Comput., 172, 349-367. crossref(new window)

6.
Chen, C.S., Fung, C.P. and Chien, R.D. (2007), "Nonlinear vibration of an initially stressed laminated plate according a higher order theory", Compos. Struct., 77, 521-532. crossref(new window)

7.
Chen, C.S., Fung, C.P. and Yang, J.G. (2009), "Assessment of plate theories for initially stressed hybrid laminated plates", Compos. Struct., 88, 195-201. crossref(new window)

8.
Civalek, O. (2008), "Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method", Finite. Elem. Anal. Des., 44, 725-731. crossref(new window)

9.
Civalek, O . and Emsen, E. (2009), "Discrete singular convolution method for bending analysis of Reissner/Mindlin plates using geometry transformation", Steel Compos. Struct., 9, 59-75. crossref(new window)

10.
Jones, R.M. (1975), Mechanics of Composite Materials, Scripta, Washington, DC, USA.

11.
Kumar, R. and Singh, D. (2010), "Hygrothermal buckling response of laminated composite plates with random material properties: Micro-mechanical model", Appl. Mech. Mater., 110, 113-119.

12.
Lee, C.Y. and Kim, J.H. (2013), "Hygrothermal postbuckling behavior of functionally graded plates", Compos. Struct., 95, 278-282. crossref(new window)

13.
Liu, C.F. and Huang, C.H. (1996), "Free vibration of composite laminated plates subjected to temperature changes", Comput. Struct., 60, 95-101. crossref(new window)

14.
Lo, S.H., Zhen, W., Cheung, Y.K. and Wanji, C. (2010), "Hygrothermal effects on multilayered composite plates using a refined higher order theory", Compos. Struct., 92, 633-646. crossref(new window)

15.
Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2016), "Large amplitude free vibration analysis of laminated composite spherical panel under hygrothermal environment", Int. J. Str. Stab. Dyn. (available on line)

16.
Mahapatra, T.R. and Panda, S.K. (2015), "Thermoelastic vibration analysis of laminated doubly curved shallow shell panel", J. Therm. Stress., 38, 39-68. crossref(new window)

17.
Naidu, N.V.S. and Sinha P.K. (2007), "Nonlinear free vibration analysis of laminated composite shells in hygrothermal environments", Compos. Struct., 77, 475-483. crossref(new window)

18.
Nanda, N. and Pradyumna S. (2011), "Nonlinear dynamic response of laminated shells with imperfections in hygrothermal environments", J. Compos. Mater., 45, 2103-2112. crossref(new window)

19.
Nayak, A.K., Moy, S.S.J. and Shenoi, R.A. (2005), "A higher order finite element theory for buckling and vibration analysis of initially stressed composite sandwich plates", J. Sound Vib., 286, 763-780. crossref(new window)

20.
Nayak, A.K. and Shenoi, R.A. (2005), "Assumed strain finite elements for buckling and vibration analysis of initially stressed damped composite sandwich plates", J. Sandw. Struct. Mater., 7, 307-334. crossref(new window)

21.
Panda, S.K. and Mahapatra, T.R. (2014), "Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading", Meccanica, 49, 191-213. crossref(new window)

22.
Panda, S.K. and Singh, B.N. (2009), "Thermal postbuckling behavior of laminated composite cylindrical/hyperboloidal shallow shell panel using nonlinear finite element method", Compos. Struct., 91, 366-384. crossref(new window)

23.
Panda, S.K. and Singh, B.N. (2010), "Nonlinear free vibration analysis of thermally post-buckled composite spherical shell panel", Int. J. Mech Mater. Des., 6, 175-188 crossref(new window)

24.
Panda, S.K .and Singh, B.N. (2011), "Large amplitude free vibration analysis of thermally post-buckled composite double curved panel using nonlinear FEM", Finite Elem. Anal. Des., 47, 378-386. crossref(new window)

25.
Panda, S.K. and Singh, B.N. (2013a), "Thermal post-buckling analysis of laminated composite shell panel using NFEM", Mech. Bas. Des. Struct. Mach., 41, 468-488. crossref(new window)

26.
Panda, S.K. and Singh, B.N. (2013b), "Post-buckling analysis of laminated composite doubly curved panel embedded with SMA fibres subjected to thermal environment", Mech. Adv. Matl. Struct., 20, 842-853. crossref(new window)

27.
Panda, S.K. and Mahapatra, T.R. (2014), "Nonlinear finite element analysis of laminated composite spherical shell vibration under uniform thermal loading", Meccanica, 49, 191-213. crossref(new window)

28.
Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behavior of thick composite laminates using higher-order theory", Compos. Struct., 56, 25-34. crossref(new window)

29.
Rajasekaran, S. and Wilson, A.J. (2013), "Buckling and vibration of rectangular plates of variable thickness with different end conditions by finite difference technique", Struct. Eng. Mech., 46, 269-294. crossref(new window)

30.
Rao, V.V.S. and Sinha, P.K. (2004), "Bending characteristics of thick multidirectional composite plates under hygrothermal environment", J. Reinf. Plast. Compos., 23, 1481-1495. crossref(new window)

31.
Shen, H.S. (2001), "Hygrothermal effects on the postbuckling of shear deformable laminated plates", Int. J. Mech. Sci., 43, 1259-1281. crossref(new window)

32.
Shen, H.S. (2002), "Hygrothermal effects on the nonlinear bending of shear deformable laminated plates", J. Eng. Mech., 128, 493-496. crossref(new window)

33.
Shen, H.S. and Wang, Z.X. (2012), "Nonlinear vibration of hybrid laminated plates resting on elastic foundations in thermal environments", Appl. Math. Model., 36, 6275-6290. crossref(new window)

34.
Shen, H.S., Zheng, J.J. and Huang, X.L. (2004), "The effects of hygrothermal conditions on the dynamic response of shear deformable laminated plates resting on elastic foundations", J. Reinf. Plast. Compos., 23, 1095-1113. crossref(new window)

35.
Singh, B.N. and Verma, V.K. (2009), "Hygrothermal effects on the buckling of laminated composite plates with random geometric and material properties", J. Reinf. Plast. Compos., 28, 409-427. crossref(new window)

36.
Tsai, S.W. and Hahn, H.T. (1980), Introduction to composite materials, Technomic, Westport, CT, USA.

37.
Wosu, S.N., Hui, D. and Daniel, L. (2012), "Hygrothermal effects on the dynamic compressive properties of graphite/epoxy composite material", Compos. Part B-Eng., 43, 841-855. crossref(new window)

38.
Zenkour, A.M. (2012), "Hygrothermal effects on the bending of angle-ply composite plates using a sinusoidal theory", Compos. Struct., 94, 3685-3696. crossref(new window)