JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Homogenized thermal properties of 3D composites with full uncertainty in the microstructure
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Homogenized thermal properties of 3D composites with full uncertainty in the microstructure
Ma, Juan; Wriggers, Peter; Li, Liangjie;
 Abstract
In this work, random homogenization analysis for the effective thermal properties of a three-dimensional composite material with unidirectional fibers is presented by combining the equivalent inclusion method with Random Factor Method (RFM). The randomness of the micro-structural morphology and constituent material properties as well as the correlation among these random parameters are completely accounted for, and stochastic effective thermal properties as thermal expansion coefficients as well as their correlation are then sought. Results from the RFM and the Monte-Carlo Method (MCM) are compared. The impact of randomness and correlation of the micro-structural parameters on the random homogenized results is revealed by two methods simultaneously, and some important conclusions are obtained.
 Keywords
random homogenization;randomness and correlation;Random Factor Method;random effective thermal proterties;Monte-Carlo Method;
 Language
English
 Cited by
 References
1.
Aboudi, J. (1991), Mechanics of Composites Materials: A Unified Micromechanical Approach, Elesevier, Amsterdam, Netherlands.

2.
Ashida, F., Tauchert, T.R., Sakata, S. and Yamashita, Y. (2003), "Control of transient deformation in a heated intelligent composite disk", Smart Mater. Struct., 12(5), 825-35. crossref(new window)

3.
Bris, C.L. (2010), Numerical Mathematics and Advanced Applications 2009, Springer, Heidburg, Germany.

4.
Eshelby, J.D. (1957), "The elastic field of an ellipsoidal inclusion, and related problems", Proc. Roy. Soc. A, 241, 376-396. crossref(new window)

5.
Gao, W., Chen, J.J., Ma, J. and Liang, Z.T. (2004), "Dynamic response analysis of stochastic frame structures under nonstationary random excitation", AIAA J., 42(9), 1818-1822. crossref(new window)

6.
Hashin, Z. and Shtrikman, S. (1962), "On some variational principles in anisotropic and nonhomogeneous elasticity", J. Mech. Phys. Solid., 10, 335-342. crossref(new window)

7.
Hiriyur, B., Waisman, H. and Deodatis, G. (2011), "Uncertainty quantification in homogenization of heterogeneous microstructures modeled by XFEM", Int. J. Numer. Meth. Eng., 88(3), 257-278. crossref(new window)

8.
Knott, G.M., Jackson, T.L. and Buckmaster, J. (2011), "Random packing of heterogeneous propellants", AIAA J., 39(4), 678-686.

9.
Lascoup, B., Perez, L. and Autriaue, L. (2013), "On the feasibility of defect detection in composite material based on thermal periodic excitation", Compos. Part B-Eng., 45(1), 1023-1030. crossref(new window)

10.
Li, J. (1993), "Some trends of structural dynamic analysis", World Earthq. Eng., 2, 1-8. (in Chinese)

11.
Li, X.X. (1991), "Spatial random response analysis and damage assessment of multi storey reinforced concrete structure under strong earthquake excitation", Ph.D. Dissertation, Southwest Jiaotong University, Chengdu. (in Chinese)

12.
Lu, Z.X., Yuan, Z.S. and Liu, Q. (2013), "3D numerical simulation for the elastic properties of random fiber composites with a wide range of fiber aspect ratios", Comp. Mater. Sci., 90, 123-129.

13.
Ma, J., Wriggers, P., Gao, W., Chen, J.J. and Sahraee, S. (2011), "Reliability-based optimization of trusses with random parameters under dynamic loads", Comp. Mech., 47, 627-640. crossref(new window)

14.
Miehe, C., Schotte, J. and Schroder, J. (1999), "Computational micromacro transitions and overall moduli in the analysis of polycrystals at large strains", Comp. Mater. Sci., 16, 372-382. crossref(new window)

15.
Mori, T. and Tanaka, K. (1972), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall, 21, 571-574.

16.
Nemat-Nasser, S. and Hori, M. (1999), Micromechanics: Overall Properties of Heterogeneous Solids, Elsevier, Amsterdam, Netherlands.

17.
Reuss, A. (1929), "Berechnung der fliessgrenz von mischkristallen auf grund der plastizitatsbedingung fur einkristalle. Z. Angew", Math. Mech. Solid., 9, 49-58. crossref(new window)

18.
Rong, J.L., Gan, Z.K. and Wang, D. (2015), "Numerical predictions of the mechanical properties of NT-ZnOw reinforced composites", Comp. Mater. Sci., 96, 185-190. crossref(new window)

19.
Sakata, S., Ashida, F. and Kojima, T. (2008), "Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method", Int. J. Solid. Struct., 45(25-26), 6553-6565. crossref(new window)

20.
Stroeven, M., Askes, H. and Sluys, L. J. (2004), "Numerical determination of representative volumes for granular materials", Comput. Meth. Appl. M., 193, 3221-3238. crossref(new window)

21.
Takao, Y. and Taya, M. (1985), "Thermal expansion coefficients and thermal stresses in an aligned short fiber composite with application to a short carbon fiber/aluminum", J. Appl. Mech., 52(4), 806-810. crossref(new window)

22.
Tian, W.L., Qi, L.H. and Zhou, J.M. (2015), "Quantitative characterization of the fiber orientation variation in the Csf/Mg composites", Comp. Mater. Sci., 98, 56-63. crossref(new window)

23.
Tohgo, K. (2004), Analysis of material strength, Uchida Rokakuho, Japan.

24.
Tootkaboni, M. and Graham-Brady, L. (2010), "A multi-scale spectral stochastic method for homogenization of multi-phase periodic composites with random material properties", Int. J. Numer. Meth. Eng., 83(1), 59-90.

25.
Torquato, S. (2002), Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer, Heidburg, Germany.

26.
Touran, A. and Wiser, E.P. (1992), "Monte Carlo technique with correlated random variables", J. Constr. Eng. M., 118, 258-272. crossref(new window)

27.
Vel, S.S. and Goupee, A.J. (2010), "Multiscale thermoelastic analysis of random heterogeneous materials: Part I: Microstructure characterization and homogenization of material properties", Comp. Mater. Sci., 48(1), 22-38. crossref(new window)

28.
Voigt, W. (1889), "Uber die beziehung zwischen den beiden elastizitatskonstanten isotroper korper", Wied. Ann., 38, 573-587.

29.
Wu, T., Temizer, I. and Wriggers, P. (2014), "Multiscale hydro-thermo-chemo-mechanical coupling: application to alkali-silica reaction", Comp. Mater. Sci., 84, 381-395. crossref(new window)

30.
Xu, X.F. and Stefanou, G. (2012), "Explicit bounds on elastic moduli of solids containing isotropic mixture of cracks and voids", Fatig. Fract. Eng. M., 35(8), 708-717. crossref(new window)

31.
Zohdi, T. and Wriggers, P. (2008), An Introduction to Computational Micromechanics, Springer, Berlin, Heidelberg, New York, Germany.