Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates

- Journal title : Structural Engineering and Mechanics
- Volume 57, Issue 3, 2016, pp.473-506
- Publisher : Techno-Press
- DOI : 10.12989/sem.2016.57.3.473

Title & Authors

Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates

Belarbia, Mohamed-Ouejdi; Tatib, Abdelouahab; Ounisc, Houdayfa; Benchabane, Adel;

Belarbia, Mohamed-Ouejdi; Tatib, Abdelouahab; Ounisc, Houdayfa; Benchabane, Adel;

Abstract

The aim of this work is the development of a 2D quadrilateral isoparametric finite element model, based on a layerwise approach, for the bending analysis of sandwich plates. The face sheets and the core are modeled individually using, respectively, the first order shear deformation theory and the third-order plate theory. The displacement continuity condition at the interfaces `face sheets-core` is satisfied. The assumed natural strains method is introduced to avoid an eventual shear locking phenomenon. The developed element is a four-nodded isoparametric element with fifty two degrees-of-freedom (52 DOF). Each face sheet has only two rotational DOF per node and the core has nine DOF per node: six rotational degrees and three translation components which are common for the all sandwich layers. The performance of the proposed element model is assessed by six examples, considering symmetric/unsymmetric composite sandwich plates with different aspect ratios, loadings and boundary conditions. The numerical results obtained are compared with the analytical solutions and the numerical results obtained by other authors. The results indicate that the proposed element model is promising in terms of the accuracy and the convergence speed for both thin and thick plates.

Keywords

layerwise;finite element;sandwich plates;bending;

Language

English

Cited by

1.

2.

References

1.

Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101.

2.

Azar, J.J. (1968), "Bending theory for multilayer orthotropic sandwich plates", AIAA J., 6(11), 2166-2169.

3.

Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140.

4.

Carrera, E. (2003), "Historical review of zig-zag theories for multilayered plates and shells", Appl. Mech. Rev., 56, 287-308.

5.

Cetkovic, M. and Vuksanovic, D. (2009), "Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model", Compos. Struct., 88(2), 219-227.

6.

Chakrabarti, A. and Sheikh, A.H. (2004), "A new triangular element to model inter-laminar shear stress continuous plate theory", Int. J. Numer. Meth. Eng., 60(7), 1237-1257.

7.

Chakrabarti, A. and Sheikh, A.H. (2005), "Analysis of laminated sandwich plates based on interlaminar shear stress continuous plate theory", J. Eng. Mech., 131(4), 377-384.

8.

Chalak, H.D., Chakrabarti, A., Iqbal, M.A. and Sheikh, A.H. (2012), "An improved C0 FE model for the analysis of laminated sandwich plate with soft core", Finite Elem. Anal. Des., 56, 20-31.

9.

Chalak, H.D., Chakrabarti, A., Sheikh, A.H. and Iqbal, M.A. (2014), "C0 FE model based on HOZT for the analysis of laminated soft core skew sandwich plates: Bending and vibration", Appl. Math. Model., 38(4), 1211-1223.

10.

Cho, M. and Parmerter, R. (1993), "Efficient higher order composite plate theory for general lamination configurations", AIAA J., 31(7), 1299-1306.

11.

Cho, M. and Parmerter, R.R. (1992), "An efficient higher-order plate theory for laminated composites", Compos. Struct., 20(2), 113-123.

12.

Di Sciuva, M. (1986), "Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model", J. Sound Vib., 105(3), 425-442.

13.

Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general non-linear analysis", Eng. Comput., 1(1), 77-88.

14.

Folie, G. (1970), "Bending of clamped orthotropic sandwich plates", J. Eng. Mech. Div., 96(3), 243-265.

15.

Grover, N., Maiti, D. and Singh, B. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675.

16.

Ha, K. (1990), "Finite element analysis of sandwich plates: an overview", Comput. Struct., 37(4), 397-403.

17.

Huang, H. and Hinton, E. (1984), "A nine node Lagrangian Mindlin plate element with enhanced shear interpolation", Eng. Comput., 1(4), 369-379.

18.

Kabir, H.R.H. (1995), "A shear-locking free robust isoparametric three-node triangular finite element for moderately-thick and thin arbitrarily laminated plates", Comput. Struct., 57(4), 589-597.

19.

20.

Kant, T. and Kommineni, J. (1992), "$C^{0}$ Finite element geometrically non-linear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory", Comput. Struct., 45(3), 511-520.

21.

Kant, T. and Swaminathan, K. (2000), "Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments", Compos. Struct., 49(1), 65-75.

22.

Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344.

23.

Kapuria, S. and Kulkarni, S. (2007), "An improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory for static analysis of composite and sandwich plates", Int. J. Numer. Meth. Eng., 69(9), 1948-1981.

24.

Khandan, R., Noroozi, S., Sewell, P. and Vinney, J. (2012), "The development of laminated composite plate theories: a review", J. Mater. Sci., 47(16), 5901-5910.

25.

Khandelwal, R., Chakrabarti, A. and Bhargava, P. (2013), "An efficient FE model based on combined theory for the analysis of soft core sandwich plate", Comput. Mech., 51(5), 673-697.

26.

Khatua, T. and Cheung, Y. (1973), "Bending and vibration of multilayer sandwich beams and plates", Int. J. Numer. Meth. Eng., 6(1), 11-24.

27.

Kheirikhah, M.M., Khalili, S.M.R. and Malekzadeh Fard, K. (2012), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", Euro. J. Mech. A/Solid., 31(1), 54-66.

28.

Kirchhoff, G. (1850), "Uber das gleichgewicht und die bewegung einer elastischen scheibe", J. Fur Die Reine und Angewandte Mathematik,40, 51-88.

29.

Kulkarni, S. and Kapuria, S. (2007), "A new discrete Kirchhoff quadrilateral element based on the thirdorder theory for composite plates", Comput. Mech., 39(3), 237-246.

30.

Lee, L. and Fan, Y. (1996), "Bending and vibration analysis of composite sandwich plates", Comput. Struct., 60(1), 103-112.

31.

Lee, S. (2004), "Free vibration analysis of plates by using a four-node finite element formulated with assumed natural transverse shear strain", J. Sound Vib., 278(3), 657-684.

32.

Lee, S.J. and Kim, H.R. (2013), "FE analysis of laminated composite plates using a higher order shear deformation theory with assumed strains", Latin Am. J. Solid. Struct., 10(3), 523-547.

33.

Librescu, L. (1975), Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-type Structures, Noordhoff, Leyden, Netherlands

34.

Linke, M., Wohlers, W. and Reimerdes, H.G. (2007), "Finite element for the static and stability analysis of sandwich plates", J. Sandw. Struct. Mater., 9(2), 123-142.

35.

Liou, W.J. and Sun, C. (1987), "A three-dimensional hybrid stress isoparametric element for the analysis of laminated composite plates", Comput. Struct., 25(2), 241-249.

36.

Lo, K., Christensen, R. and Wu, E. (1977a), "A high-order theory of plate deformation-Part 1: Homogeneous plates", J. Appl. Mech., 44(4), 663-668.

37.

Lo, K., Christensen, R. and Wu, E. (1977b), "A high-order theory of plate deformation-part 2: laminated plates", J. Appl. Mech., 44(4), 669-676.

38.

Manjunatha, B. and Kant, T. (1993), "On evaluation of transverse stresses in layered symmetric composite and sandwich laminates under flexure", Eng. Comput., 10(6), 499-518.

39.

Mantari, J., Oktem, A. and Guedes Soares, C. (2012), "A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates", Comput. Struct., 94, 45-53.

40.

Maturi, D.A., Ferreira, A.J.M., Zenkour, A.M. and Mashat, D.S. (2014), "Analysis of sandwich plates with a new layerwise formulation", Compos. Part B: Eng., 56(0), 484-489.

41.

Murakami, H. (1986), "Laminated composite plate theory with improved in-plane responses", J. Appl. Mech., 53(3), 661-666.

42.

Nayak, A., Moy, S. and Shenoi, R. (2002), "Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory", Compos. Part B: Eng., 33(7), 505-519.

43.

Nayak, A., Moy, S.J. and Shenoi, R. (2003), "Quadrilateral finite elements for multilayer sandwich plates", J. Strain Anal. Eng. Des., 38(5), 377-392.

44.

Nemeth, M.P. (2012), Cubic zig-zag enrichment of the classical Kirchhoff kinematics for laminated and sandwich plate, National Aeronautics and Space Administration, Langley Research Center.

45.

Noor, A.K. and Burton, W.S. (1990), "Three-dimensional solutions for antisymmetrically solutions for antisymmetrically laminated anisotropic plates", J. Appl. Mech., 57(1), 182-188.

46.

Noor, A.K., Burton, W.S. and Bert, C.W. (1996), "Computational models for sandwich panels and shells", Appl. Mech. Rev.,49, 155.

47.

Oskooei, S. and Hansen, J. (2000), "Higher-order finite element for sandwich plates", AIAA J., 38(3), 525-533.

48.

Ounis, H., Tati, A. and Benchabane, A. (2014), "Thermal buckling behavior of laminated composite plates: a finite-element study", Front. Mech. Eng., 9(1), 41-49..

49.

Pagano, N. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater., 3(3), 398-411.

50.

Pagano, N. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34.

51.

Pandit, M., Sheikh, A.H. and Singh, B.N. (2010), "Analysis of laminated sandwich plates based on an improved higher order zigzag theory", J. Sandw. Struct. Mater., 12(3), 307-326.

52.

Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2008), "An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core", Finite Elem. Anal. Des., 44(9), 602-610.

53.

Pandya, B. and Kant, T. (1988), "Higher-order shear deformable theories for flexure of sandwich platesfinite element evaluations", Int. J. Solid. Struct., 24(12), 1267-1286.

54.

Plagianakos, T.S. and Saravanos, D.A. (2009), "Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates", Compos. Struct., 87(1), 23-35.

55.

Ramesh, S.S., Wang, C., Reddy, J. and Ang, K. (2009), "A higher-order plate element for accurate prediction of interlaminar stresses in laminated composite plates", Compos. Struct., 91(3), 337-357.

56.

Ramtekkar, G., Desai, Y. and Shah, A. (2002), "Mixed finite-element model for thick composite laminated plates", Mech. Adv. Mater. Struct., 9(2), 133-156.

57.

Ramtekkar, G., Desai, Y. and Shah, A. (2003), "Application of a three-dimensional mixed finite element model to the flexure of sandwich plate", Comput. Struct., 81(22), 2183-2198.

58.

Reddy, J., Khdeir, A. and Librescu, L. (1987), "Levy type solutions for symmetrically laminated rectangular plates using first-order shear deformation theory", J. Appl. Mech., 54(3), 740-742.

59.

Reddy, J. and Robbins, D. (1994), "Theories and computational models for composite laminates", Appl. Mech. Rev., 47, 147.

60.

Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752.

61.

Reddy, J.N. (1987), "A generalization of two-dimensional theories of laminated composite plates", Commun. Appl. Numer. Meth., 3(3), 173-180.

62.

Reddy, J.N. (1993), "An evaluation of equivalent-single-layer and layerwise theories of composite laminates", Compos. Struct., 25(1-4), 21-35.

63.

Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", Int. J. Solid. Struct., 11(5), 569-573.

64.

Rezaiee-Pajand, M., Shahabian, F. and Tavakoli, F. (2012) "A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates", Struct. Eng. Mech., 43(2), 253-271.

65.

Robbins, D.H., Jr., Reddy, J.N. and Rostam-Abadi, F. (2005), "Layerwise modeling of progressive damage in fiber-reinforced composite laminates", Int. J. Mech. Mater. Des., 2(3-4), 165-182.

66.

Sahoo, R. and Singh, B.N. (2013), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", Compos. Struct., 105(0), 385-397.

67.

Sheikh, A.H. and Chakrabarti, A. (2003), "A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates", Finite Elem. Anal. Des., 39(9), 883-903.

68.

Singh, S.K., Chakrabarti, A., Bera, P. and Sony, J. (2011), "An efficient C0 FE model for the analysis of composites and sandwich laminates with general layup", Latin Am. J. Solid. Struct., 8(2), 197-212.

69.

Spilker, R. (1982), "Hybrid-stress eight-node elements for thin and thick multilayer laminated plates", Int. J. Numer. Meth. Eng., 18(6), 801-828.

70.

Srinivas, S. and Rao, A. (1971), "A three-dimensional solution for plates and laminates", J. Franklin Inst., 291(6), 469-481.

71.

Stavsky, Y. (1965), "On the theory of symmetrically heterogeneous plates having the same thickness variation of the elastic moduli", Top. Appl. Mech.,105.

72.

Topdar, P., Sheikh, A.H. and Dhang, N. (2003), "Finite element analysis of composite and sandwich plates using a continuous inter-laminar shear stress model", J. Sandw. Struct. Mater., 5(3), 207-231.

73.

Tu, T.M., Thach, L.N. and Quoc, T.H. (2010), "Finite element modeling for bending and vibration analysis of laminated and sandwich composite plates based on higher-order theory", Comput. Mater. Sci., 49(4), S390-S394.

74.

Whitney, J. (1970), "The effect of boundary conditions on the response of laminated composites", J. Compos. Mater., 4(2), 192-203.

75.

Whitney, J. and Pagano, N. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1036.

76.

Wu, C.P. and Hsu, C.S. (1993), "A new local high-order laminate theory", Compos. Struct., 25(1), 439-448.

77.

Wu, C.P. & Lin, C.C. (1993), "Analysis of sandwich plates using a mixed finite element", Compos. Struct., 25(1), 397-405.