JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Development of a 2D isoparametric finite element model based on the layerwise approach for the bending analysis of sandwich plates
Belarbia, Mohamed-Ouejdi; Tatib, Abdelouahab; Ounisc, Houdayfa; Benchabane, Adel;
 Abstract
The aim of this work is the development of a 2D quadrilateral isoparametric finite element model, based on a layerwise approach, for the bending analysis of sandwich plates. The face sheets and the core are modeled individually using, respectively, the first order shear deformation theory and the third-order plate theory. The displacement continuity condition at the interfaces `face sheets-core` is satisfied. The assumed natural strains method is introduced to avoid an eventual shear locking phenomenon. The developed element is a four-nodded isoparametric element with fifty two degrees-of-freedom (52 DOF). Each face sheet has only two rotational DOF per node and the core has nine DOF per node: six rotational degrees and three translation components which are common for the all sandwich layers. The performance of the proposed element model is assessed by six examples, considering symmetric/unsymmetric composite sandwich plates with different aspect ratios, loadings and boundary conditions. The numerical results obtained are compared with the analytical solutions and the numerical results obtained by other authors. The results indicate that the proposed element model is promising in terms of the accuracy and the convergence speed for both thin and thick plates.
 Keywords
layerwise;finite element;sandwich plates;bending;
 Language
English
 Cited by
1.
Three-dimensional modelling of laminated glass bending on two-dimensional in-plane mesh, Composites Part B: Engineering, 2017, 120, 63  crossref(new windwow)
2.
Three-dimensional modelling of heat conduction in laminated plates with the use of a two-dimensional numerical model, Composite Structures, 2017, 171, 562  crossref(new windwow)
3.
On the Free Vibration Analysis of Laminated Composite and Sandwich Plates: A Layerwise Finite Element Formulation, Latin American Journal of Solids and Structures, 2017, 14, 12, 2265  crossref(new windwow)
 References
1.
Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. crossref(new window)

2.
Azar, J.J. (1968), "Bending theory for multilayer orthotropic sandwich plates", AIAA J., 6(11), 2166-2169. crossref(new window)

3.
Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. crossref(new window)

4.
Carrera, E. (2003), "Historical review of zig-zag theories for multilayered plates and shells", Appl. Mech. Rev., 56, 287-308. crossref(new window)

5.
Cetkovic, M. and Vuksanovic, D. (2009), "Bending, free vibrations and buckling of laminated composite and sandwich plates using a layerwise displacement model", Compos. Struct., 88(2), 219-227. crossref(new window)

6.
Chakrabarti, A. and Sheikh, A.H. (2004), "A new triangular element to model inter-laminar shear stress continuous plate theory", Int. J. Numer. Meth. Eng., 60(7), 1237-1257. crossref(new window)

7.
Chakrabarti, A. and Sheikh, A.H. (2005), "Analysis of laminated sandwich plates based on interlaminar shear stress continuous plate theory", J. Eng. Mech., 131(4), 377-384. crossref(new window)

8.
Chalak, H.D., Chakrabarti, A., Iqbal, M.A. and Sheikh, A.H. (2012), "An improved C0 FE model for the analysis of laminated sandwich plate with soft core", Finite Elem. Anal. Des., 56, 20-31. crossref(new window)

9.
Chalak, H.D., Chakrabarti, A., Sheikh, A.H. and Iqbal, M.A. (2014), "C0 FE model based on HOZT for the analysis of laminated soft core skew sandwich plates: Bending and vibration", Appl. Math. Model., 38(4), 1211-1223. crossref(new window)

10.
Cho, M. and Parmerter, R. (1993), "Efficient higher order composite plate theory for general lamination configurations", AIAA J., 31(7), 1299-1306. crossref(new window)

11.
Cho, M. and Parmerter, R.R. (1992), "An efficient higher-order plate theory for laminated composites", Compos. Struct., 20(2), 113-123. crossref(new window)

12.
Di Sciuva, M. (1986), "Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model", J. Sound Vib., 105(3), 425-442. crossref(new window)

13.
Dvorkin, E.N. and Bathe, K.J. (1984), "A continuum mechanics based four-node shell element for general non-linear analysis", Eng. Comput., 1(1), 77-88. crossref(new window)

14.
Folie, G. (1970), "Bending of clamped orthotropic sandwich plates", J. Eng. Mech. Div., 96(3), 243-265.

15.
Grover, N., Maiti, D. and Singh, B. (2013), "A new inverse hyperbolic shear deformation theory for static and buckling analysis of laminated composite and sandwich plates", Compos. Struct., 95, 667-675. crossref(new window)

16.
Ha, K. (1990), "Finite element analysis of sandwich plates: an overview", Comput. Struct., 37(4), 397-403. crossref(new window)

17.
Huang, H. and Hinton, E. (1984), "A nine node Lagrangian Mindlin plate element with enhanced shear interpolation", Eng. Comput., 1(4), 369-379. crossref(new window)

18.
Kabir, H.R.H. (1995), "A shear-locking free robust isoparametric three-node triangular finite element for moderately-thick and thin arbitrarily laminated plates", Comput. Struct., 57(4), 589-597. crossref(new window)

19.
Kant, T. (1982), "Numerical analysis of thick plates", Comput. Meth. Appl. Mech. Eng., 31(1), 1-18. crossref(new window)

20.
Kant, T. and Kommineni, J. (1992), "$C^{0}$Finite element geometrically non-linear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory", Comput. Struct., 45(3), 511-520. crossref(new window)

21.
Kant, T. and Swaminathan, K. (2000), "Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments", Compos. Struct., 49(1), 65-75. crossref(new window)

22.
Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344. crossref(new window)

23.
Kapuria, S. and Kulkarni, S. (2007), "An improved discrete Kirchhoff quadrilateral element based on third-order zigzag theory for static analysis of composite and sandwich plates", Int. J. Numer. Meth. Eng., 69(9), 1948-1981. crossref(new window)

24.
Khandan, R., Noroozi, S., Sewell, P. and Vinney, J. (2012), "The development of laminated composite plate theories: a review", J. Mater. Sci., 47(16), 5901-5910. crossref(new window)

25.
Khandelwal, R., Chakrabarti, A. and Bhargava, P. (2013), "An efficient FE model based on combined theory for the analysis of soft core sandwich plate", Comput. Mech., 51(5), 673-697. crossref(new window)

26.
Khatua, T. and Cheung, Y. (1973), "Bending and vibration of multilayer sandwich beams and plates", Int. J. Numer. Meth. Eng., 6(1), 11-24. crossref(new window)

27.
Kheirikhah, M.M., Khalili, S.M.R. and Malekzadeh Fard, K. (2012), "Biaxial buckling analysis of soft-core composite sandwich plates using improved high-order theory", Euro. J. Mech. A/Solid., 31(1), 54-66. crossref(new window)

28.
Kirchhoff, G. (1850), "Uber das gleichgewicht und die bewegung einer elastischen scheibe", J. Fur Die Reine und Angewandte Mathematik,40, 51-88.

29.
Kulkarni, S. and Kapuria, S. (2007), "A new discrete Kirchhoff quadrilateral element based on the thirdorder theory for composite plates", Comput. Mech., 39(3), 237-246.

30.
Lee, L. and Fan, Y. (1996), "Bending and vibration analysis of composite sandwich plates", Comput. Struct., 60(1), 103-112. crossref(new window)

31.
Lee, S. (2004), "Free vibration analysis of plates by using a four-node finite element formulated with assumed natural transverse shear strain", J. Sound Vib., 278(3), 657-684. crossref(new window)

32.
Lee, S.J. and Kim, H.R. (2013), "FE analysis of laminated composite plates using a higher order shear deformation theory with assumed strains", Latin Am. J. Solid. Struct., 10(3), 523-547. crossref(new window)

33.
Librescu, L. (1975), Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-type Structures, Noordhoff, Leyden, Netherlands

34.
Linke, M., Wohlers, W. and Reimerdes, H.G. (2007), "Finite element for the static and stability analysis of sandwich plates", J. Sandw. Struct. Mater., 9(2), 123-142. crossref(new window)

35.
Liou, W.J. and Sun, C. (1987), "A three-dimensional hybrid stress isoparametric element for the analysis of laminated composite plates", Comput. Struct., 25(2), 241-249. crossref(new window)

36.
Lo, K., Christensen, R. and Wu, E. (1977a), "A high-order theory of plate deformation-Part 1: Homogeneous plates", J. Appl. Mech., 44(4), 663-668. crossref(new window)

37.
Lo, K., Christensen, R. and Wu, E. (1977b), "A high-order theory of plate deformation-part 2: laminated plates", J. Appl. Mech., 44(4), 669-676. crossref(new window)

38.
Manjunatha, B. and Kant, T. (1993), "On evaluation of transverse stresses in layered symmetric composite and sandwich laminates under flexure", Eng. Comput., 10(6), 499-518. crossref(new window)

39.
Mantari, J., Oktem, A. and Guedes Soares, C. (2012), "A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates", Comput. Struct., 94, 45-53.

40.
Maturi, D.A., Ferreira, A.J.M., Zenkour, A.M. and Mashat, D.S. (2014), "Analysis of sandwich plates with a new layerwise formulation", Compos. Part B: Eng., 56(0), 484-489. crossref(new window)

41.
Murakami, H. (1986), "Laminated composite plate theory with improved in-plane responses", J. Appl. Mech., 53(3), 661-666. crossref(new window)

42.
Nayak, A., Moy, S. and Shenoi, R. (2002), "Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory", Compos. Part B: Eng., 33(7), 505-519. crossref(new window)

43.
Nayak, A., Moy, S.J. and Shenoi, R. (2003), "Quadrilateral finite elements for multilayer sandwich plates", J. Strain Anal. Eng. Des., 38(5), 377-392. crossref(new window)

44.
Nemeth, M.P. (2012), Cubic zig-zag enrichment of the classical Kirchhoff kinematics for laminated and sandwich plate, National Aeronautics and Space Administration, Langley Research Center.

45.
Noor, A.K. and Burton, W.S. (1990), "Three-dimensional solutions for antisymmetrically solutions for antisymmetrically laminated anisotropic plates", J. Appl. Mech., 57(1), 182-188. crossref(new window)

46.
Noor, A.K., Burton, W.S. and Bert, C.W. (1996), "Computational models for sandwich panels and shells", Appl. Mech. Rev.,49, 155. crossref(new window)

47.
Oskooei, S. and Hansen, J. (2000), "Higher-order finite element for sandwich plates", AIAA J., 38(3), 525-533. crossref(new window)

48.
Ounis, H., Tati, A. and Benchabane, A. (2014), "Thermal buckling behavior of laminated composite plates: a finite-element study", Front. Mech. Eng., 9(1), 41-49.. crossref(new window)

49.
Pagano, N. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater., 3(3), 398-411. crossref(new window)

50.
Pagano, N. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. crossref(new window)

51.
Pandit, M., Sheikh, A.H. and Singh, B.N. (2010), "Analysis of laminated sandwich plates based on an improved higher order zigzag theory", J. Sandw. Struct. Mater., 12(3), 307-326. crossref(new window)

52.
Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2008), "An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core", Finite Elem. Anal. Des., 44(9), 602-610. crossref(new window)

53.
Pandya, B. and Kant, T. (1988), "Higher-order shear deformable theories for flexure of sandwich platesfinite element evaluations", Int. J. Solid. Struct., 24(12), 1267-1286. crossref(new window)

54.
Plagianakos, T.S. and Saravanos, D.A. (2009), "Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates", Compos. Struct., 87(1), 23-35. crossref(new window)

55.
Ramesh, S.S., Wang, C., Reddy, J. and Ang, K. (2009), "A higher-order plate element for accurate prediction of interlaminar stresses in laminated composite plates", Compos. Struct., 91(3), 337-357. crossref(new window)

56.
Ramtekkar, G., Desai, Y. and Shah, A. (2002), "Mixed finite-element model for thick composite laminated plates", Mech. Adv. Mater. Struct., 9(2), 133-156. crossref(new window)

57.
Ramtekkar, G., Desai, Y. and Shah, A. (2003), "Application of a three-dimensional mixed finite element model to the flexure of sandwich plate", Comput. Struct., 81(22), 2183-2198. crossref(new window)

58.
Reddy, J., Khdeir, A. and Librescu, L. (1987), "Levy type solutions for symmetrically laminated rectangular plates using first-order shear deformation theory", J. Appl. Mech., 54(3), 740-742. crossref(new window)

59.
Reddy, J. and Robbins, D. (1994), "Theories and computational models for composite laminates", Appl. Mech. Rev., 47, 147. crossref(new window)

60.
Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. crossref(new window)

61.
Reddy, J.N. (1987), "A generalization of two-dimensional theories of laminated composite plates", Commun. Appl. Numer. Meth., 3(3), 173-180. crossref(new window)

62.
Reddy, J.N. (1993), "An evaluation of equivalent-single-layer and layerwise theories of composite laminates", Compos. Struct., 25(1-4), 21-35. crossref(new window)

63.
Reissner, E. (1975), "On transverse bending of plates, including the effect of transverse shear deformation", Int. J. Solid. Struct., 11(5), 569-573. crossref(new window)

64.
Rezaiee-Pajand, M., Shahabian, F. and Tavakoli, F. (2012) "A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates", Struct. Eng. Mech., 43(2), 253-271. crossref(new window)

65.
Robbins, D.H., Jr., Reddy, J.N. and Rostam-Abadi, F. (2005), "Layerwise modeling of progressive damage in fiber-reinforced composite laminates", Int. J. Mech. Mater. Des., 2(3-4), 165-182. crossref(new window)

66.
Sahoo, R. and Singh, B.N. (2013), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", Compos. Struct., 105(0), 385-397. crossref(new window)

67.
Sheikh, A.H. and Chakrabarti, A. (2003), "A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates", Finite Elem. Anal. Des., 39(9), 883-903. crossref(new window)

68.
Singh, S.K., Chakrabarti, A., Bera, P. and Sony, J. (2011), "An efficient C0 FE model for the analysis of composites and sandwich laminates with general layup", Latin Am. J. Solid. Struct., 8(2), 197-212. crossref(new window)

69.
Spilker, R. (1982), "Hybrid-stress eight-node elements for thin and thick multilayer laminated plates", Int. J. Numer. Meth. Eng., 18(6), 801-828. crossref(new window)

70.
Srinivas, S. and Rao, A. (1971), "A three-dimensional solution for plates and laminates", J. Franklin Inst., 291(6), 469-481. crossref(new window)

71.
Stavsky, Y. (1965), "On the theory of symmetrically heterogeneous plates having the same thickness variation of the elastic moduli", Top. Appl. Mech.,105.

72.
Topdar, P., Sheikh, A.H. and Dhang, N. (2003), "Finite element analysis of composite and sandwich plates using a continuous inter-laminar shear stress model", J. Sandw. Struct. Mater., 5(3), 207-231. crossref(new window)

73.
Tu, T.M., Thach, L.N. and Quoc, T.H. (2010), "Finite element modeling for bending and vibration analysis of laminated and sandwich composite plates based on higher-order theory", Comput. Mater. Sci., 49(4), S390-S394. crossref(new window)

74.
Whitney, J. (1970), "The effect of boundary conditions on the response of laminated composites", J. Compos. Mater., 4(2), 192-203. crossref(new window)

75.
Whitney, J. and Pagano, N. (1970), "Shear deformation in heterogeneous anisotropic plates", J. Appl. Mech., 37(4), 1031-1036. crossref(new window)

76.
Wu, C.P. and Hsu, C.S. (1993), "A new local high-order laminate theory", Compos. Struct., 25(1), 439-448. crossref(new window)

77.
Wu, C.P. & Lin, C.C. (1993), "Analysis of sandwich plates using a mixed finite element", Compos. Struct., 25(1), 397-405. crossref(new window)

78.
Xiaohui, R., Wanji, C. and Zhen, W. (2012), "A C0-type zig-zag theory and finite element for laminated composite and sandwich plates with general configurations", Arch. Appl. Mech., 82(3), 391-406. crossref(new window)

79.
Zhang, Y. and Yang, C. (2009), "Recent developments in finite element analysis for laminated composite plates", Compos. Struct., 88(1), 147-157. crossref(new window)