Influence of microstructure, heterogeneity and internal friction on SH waves propagation in a viscoelastic layer overlying a couple stress substrate

- Journal title : Structural Engineering and Mechanics
- Volume 57, Issue 4, 2016, pp.703-716
- Publisher : Techno-Press
- DOI : 10.12989/sem.2016.57.4.703

Title & Authors

Influence of microstructure, heterogeneity and internal friction on SH waves propagation in a viscoelastic layer overlying a couple stress substrate

Sharma, Vikas; Kumar, Satish;

Sharma, Vikas; Kumar, Satish;

Abstract

In this paper, we have investigated shear horizontal wave propagation in a layered structure, consisting of granular macromorphic rock (Dionysos Marble) substrate underlying a viscoelastic layer of finite thickness. SH waves characteristics are affected by the material properties of both substrate and the coating. The effects of microstructural parameter "characteristic length" of the substrate, along with heterogeneity, internal friction and thickness of viscoelastic layer are studied on the dispersion curves. Dispersion equation for SH wave is derived. Real and damping phase velocities of SH waves are studied against dimensionless wave number, for different combinations of various parameters involved in the problem.

Keywords

SH waves;viscoelastic;couple stress;heterogeneity;characteristic length;

Language

English

Cited by

References

1.

Akgoz, B. and Civalek, O. (2013), "Modeling and analysis of micr o-sized plates resting on elastic medium using the modified couple stress theory", Meccanica, 48, 863-873.

2.

Bhattacharya, S.N. (1970), "Exact solution of SH-wave equation for inhomogeneous media", Bull. Seismol. Soc. A., 60(6), 1847-1859.

3.

Borcherdt, R.D. (2009), Viscoelastic Waves in Layered Media, Cambridge University Press, New York.

4.

Chakraborty, M. (1985), "Reflection and transmission of SH waves from an inhomogeneous half space", Proc. Indian Natn. Sci. Acad., 51(4), 716-723.

5.

Chattopadhyay, A., Gupta, S., Singh, A.K. and Sahu, S.A. (2010), "Propagation of SH waves in an irregular non homogeneous monoclinic crustal layer over a semi-infinite monoclinic medium", Appl. Math. Sci., 4(44), 2157-2170.

6.

Chaudhary, S., Kaushik, V.P. and Tomar, S.K. (2010), "Transmission of plane SH-waves through a monoclinic layer embedded between two different self-reinforced elastic solid half spaces", Int. J. Appl. Math. Mech., 6(19), 22-43.

7.

Chen, W. and Li, X. (2014), "A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model", Arch. Appl. Mech., 84, 323-341.

8.

Cosserat, E. and Cosserat, F. (1909), "Theorie des corps deformables (Theory of Deformable Bodies)", A. Hermann et Fils, Paris.

9.

Das, T.K., Sengupta, P.R. and Debnath, L. (1991), "Thermo-visco-elastic Rayleigh waves under the influence of couple stress and gravity", Int. J. Math. Math. Sci., 14(3), 553-560.

10.

Eringen, A.C. (1968), Theory of Micropolar Elasticity, Ed. Liebowitz, H., Fracture, Vol. 2, Academic Press, New York.

11.

Georgiadis, H.G. and Velgaki, E.G. (2003), "High-frequency Rayleigh waves in materials with microstructure and couple-stress effects", Int. J. Solid. Struct., 40, 2501-2520.

12.

Gubbins, D. (1990), Seismology and Plate Tectonics, Cambridge University Press, Cambridge.

13.

Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solid. Struct., 48, 2496-2510.

14.

Kakar, R. (2015), "SH-wave propagation in a heterogeneous layer over an inhomogeneous isotropic elastic half-space", Earthq. Struct., 9(2), 305-320.

15.

Kaushik, V.P. and Chopra, S.D. (1984), "Transmission and reflection of inhomogeneous plane SH- waves at an interface between two horizontally and vertically heterogeneous viscoelastic solids", Proc. Indian Natn. Sci. Acad,, 50(4), 291-311.

16.

Koiter, W.T. (1964), "Couple stresses in the theory of elasticity, I and II", Proc. Ned. Akad. Wet B, 67, 17-44.

17.

Lakes, R.S. (1991), "Experimental micro mechanics methods for conventional and negative poisson's ratio cellular solids as cosserat continua", J. Eng. Mater. Tech., 113, 148-155.

18.

Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration. Mech. Anal., 11, 415-488.

19.

Nowacki, W. (1974), Micropolar Elasticity, International Center for Mechanical Sciences, Courses and Lectures No. 151, Udine, Springer-Verlag, Wien-New York.

20.

Ottosen, N.S., Ristinmaa, M. and Ljung, C. (2000), "Rayleigh waves by the indeterminate couple-stress theory", Eur. J. Mech. A/Solid., 19, 929-947.

21.

Ravindra, R. (1968), "Usual assumptions in the treatment of wave propagation in heterogeneous elastic media", Pure Appl. Geophys., 70(1), 12-17.

22.

Sahu, S.A., Saroj, P.K. and Dewangan, N. (2014), "SH-waves in viscoelastic heterogeneous layer over halfspace with self-weight", Arch. Appl. Mech., 84, 235-245.

23.

Schoenberg, M. (1971), "Transmission and reflection of plane waves at an elastic-viscoelastic interface", Geophys. J. Int., 25, 35-47.

24.

Sengupta, P.R. and Ghosh, B. (1974), "Effects of couple stresses on the propagation of waves in an elastic layer", Pure Appl. Geophy., 112, 331-338.

25.

Toupin , R.A. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. Anal., 11, 385-414.

26.

Vardoulakis, I. and Georgiadis, H.G. (1997), "SH surface waves in a homogeneous gradient-elastic halfspace with surface energy", J. Elast., 47, 147-165.

27.

Voigt, W. (1887), "Theoretische Studien fiber die Elastizitatsverhiltnisse der Kristalle (Theoretical Studies on the Elasticity Relationships of Crystals)", Abh Gesch Wissenschaften 34.