JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Edge stresses analysis in thick composite panels subjected to axial loading using layerwise formulation
Ahmadi, Isa;
 Abstract
Based on a reduced displacement field, a layer-wise (LW) formulation is developed for analysis of thick shell panels which is subjected to axial tension. Employing the principle of minimum total potential energy, the local governing equations of thick panel which is subjected to axial extension are obtained. An analytical method is developed for solution of the governing equations for various edge conditions. The governing equations are solved for free and simply supported edge conditions. The interlaminar stresses in the panel are investigated by means of Hooke`s law and also by means of integration of the equilibrium equations of elasticity. Dependency of the result upon the number of numerical layers in the layerwise theory (LWT) is studied. The accuracy of the numerical results is validated by comparison with the results of the finite element method and with other available results in the open literature and good agreement is seen between the results. Numerical results are then presented for the distribution of interlaminar normal and shear stresses within the symmetric and un-symmetric cross-ply thick panels with free and simply supported boundaries. The effects of the geometrical parameters such as radius to thickness and width to thickness ratio are investigated on the distribution of the interlaminar stresses in thick panels.
 Keywords
thick shell panel;interlaminar stresses;layerwise theory;cross-ply laminate;free edge;simply supported edge;
 Language
English
 Cited by
1.
Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells,;;

Steel and Composite Structures, 2016. vol.22. 5, pp.1193-1214 crossref(new window)
 References
1.
Ahmadi, I. (2005), "Analysis of interlaminar stresses in thin composite shells", MSc. Thesis, Sharif University of Technology, Tehran, Iran.

2.
Ahn, J.S. and Woo, K.S. (2014), "Interlaminar stress distribution of laminated composites using the mixeddimensional transition element", J. Compos. Mater., 48(1), 3-20. crossref(new window)

3.
Bheskar, K. and Varadan, T.K. (1993), "Interlaminar stresses in composite cylindrical shells under transient loads", J. Sound Vib., 168(3), 469-477. crossref(new window)

4.
Chaudhuri, R.A. (1990), "On the prediction of interlaminar stresses in a thick laminated general shell", Int. J. Solid. Struct., 26(5-6), 499-510. crossref(new window)

5.
Cho, M. and Kim, H.S. (2000), "Iterative free-edge stress analysis of composite laminates under extension, bending, twisting and thermal loadings", Int. J. Solid. Struct., 37(3), 435-459. crossref(new window)

6.
Ding, S., Tong, J.W., Shen, M. and Huo, Y. (2010), "Three-Dimensional elastic-plastic analysis of the interlaminar stresses for the AS4/PEEK composite laminate with a circular hole", Mech. Adv. Mater. Struct., 17(6), 406-418. crossref(new window)

7.
Fagiano, C., Abdalla, M.M. and Gurdal, Z. (2010), "Interlaminar stress recovery of multilayer composite shell structures for three-dimensional finite elements", Finite Elem. Anal. Des., 46(12), 1122-1130. crossref(new window)

8.
Franklin, H.G. and Kicher, T.P. (1968), "Stresses in laminated composite cylinders", AIAA J., 6(11), 2208-2209. crossref(new window)

9.
Fung, Y.C. and Tong, P. (2001), Classical and Computational Solid Mechanics, World Scientific, New Jersey.

10.
Herakovich, C.T. (1998), Mechanics of Fibrous Composite, John Wiley & Sons, New York.

11.
Hsu, P.W, and Herakovich, C.T. (1977), "Edge effects in angle-ply composite laminate", J. Compos. Mater., 11(4), 422-428. crossref(new window)

12.
Huang, B. and Kim, H.S. (2015), "Interlaminar stress analysis of piezo-bonded composite laminates using the extended Kantorovich method", Int. J. Mech. Sci., 90(1), 16-24. crossref(new window)

13.
Isavand, S., Bodaghi, M., Shakeri M. and Mohandesi J.A. (2015), "Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings", Steel Compos. Struct., 18(1), 1-28. crossref(new window)

14.
Kant, T. and Menon, M.P. (1991), "Estimation of Interlaminar Stresses in Fiber Reinforced Composite Cylindrical Shells", Comput. Struct., 38(2), 131-147. crossref(new window)

15.
Kant, T. and Swaminathan, K. (2000), "Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments", Compos. Struct., 49(1), 65-75. crossref(new window)

16.
Kapoor, H., Kapania, R.K. and Soni, S.R. (2013), "Interlaminar stress calculation in composite and sandwich plates in NURBS isogeometric finite element analysis", Compos. Struct., 106(1), 537-548. crossref(new window)

17.
Kar, V.R., Mahapatra, T.R. and Subrata, K.P. (2015), "Nonlinear flexural analysis of laminated Composite flat Panel under hygro-thermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. crossref(new window)

18.
Kim, H.S., Zhou, X. and Chattopadhyay, A. (2002), "Interlaminar stress analysis of shell structures with piezoelectric patch including thermal loading", AIAA J., 40(12), 2517-2525. crossref(new window)

19.
Li, S., Wang, R. and Luo, Z. (1985), "An analytic solution for interlaminar stresses in a fiber reinforced double-layer cylindrical shell", Acta Mech., 1 (2), 159-170. crossref(new window)

20.
Miri, A.K. and Nosier, A. (2011), "Interlaminar stresses in antisymmetric angle-ply cylindrical shell panels", Compos. Struct., 93(2), 419-429. crossref(new window)

21.
Most, J., Stegmair, D. and Petry, D. (2015), "Error estimation between simple, closed-form analytical formulae and full-scale FEM for interlaminar stress prediction in curved laminates", Compos. Struct., 131(1), 72-81. crossref(new window)

22.
Murthy, P.L.N. and Chamis, C.C. (1989), "Free-edge delamination: laminate width and loading conditions effects", J. Comp. Technol. Res., 11(1), 15-22. crossref(new window)

23.
Pipes, R.B. and Daniel, I.M. (1971), "Moire analysis of the interlaminar shear edge effect in laminated composites", J. Compos. Mater., 5(2), 255-259. crossref(new window)

24.
Pipes, R.B. and Pagano, N.J. (1974), "Interlaminar stresses in composite laminates-an approximate elasticity solution", J. Appl. Mech., 41(3), 668-672. crossref(new window)

25.
Pipes, R.B. and Pagano, N.J. (1970), "Interlaminar stresses in composite laminates under uniform axial extension", J. Compos. Mater., 4(4), 538-548. crossref(new window)

26.
Ramalingeswara, R. and Ganesan, N. (1996), "Interlaminar stresses in shells of revolution", Mech. Comp. Mater. Struct., 3(4), 321-329. crossref(new window)

27.
Ramalingeswara, R. and Ganesan, N. (1997), "Interlaminar stresses in spherical shell", Comput. Mater. Struct., 65(4), 575-583. crossref(new window)

28.
Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, New York.

29.
Ren, J.G. (1987), "Exact solution for laminated cylindrical shell in cylindrical bending", Compos. Sci. Tech., 29(3), 168-187.

30.
Sarvestani, H.Y. and Sarvestani M.Y. (2011), "Interlaminar stress analysis of general composite laminates", Int. J. Mech. Sci., 53(11), 958-967. crossref(new window)

31.
Shim, D.J. and Lagace, P. A. (2005), "An analytical method for interlaminar stresses due to global effects of ply drop-offs", Mech. Adv. Mater. Struct., 12(1), 21-32. crossref(new window)

32.
Tahani, M. and Nosier, A. (2003), "Free edge stress analysis of a general cross-ply composite laminates under extension and thermal loading", Compos. Struct., 60(1), 91-103. crossref(new window)

33.
Tang, S. and Levy, A. (1975), "A boundary layer theory-part II: extension of laminated finite strip", J. Compos. Mater., 9(1), 42-52. crossref(new window)

34.
Tong, J.W., Xie, M.Y. and Shen, M., and Li, H.Q. (2001), "The Interlaminar Stresses of Symmetric Composite Laminates", J. Reinf. Plast. Compos., 20(13), 1171-1182. crossref(new window)

35.
Varadan, T.K. and Bheskar, K. (1991), "Bending of laminated orthotropic cylindrical shells- an elasticity approach", Compos. Struct., 17(2), 141-156. crossref(new window)

36.
Waltz, T.L. and Vinson, J.R. (1976), "Interlaminar stresses in laminated cylindrical shells of composite material", AIAA J., 14(76), 1213-1218. crossref(new window)

37.
Wang, A.S.D. and Crossman, F.W. (1977a), "Edge effects on thermally induced stresses in composite laminates", J. Compos. Mater., 11(3), 300-312. crossref(new window)

38.
Wang, A.S.D. and Crossman F.W. (1977b), "Some new results on edge effect in symmetric composite laminates", J. Compos. Mater., 11(1), 92-106. crossref(new window)

39.
Wang, S.S. and Choi, I. (1982a), "Boundary-layer effects in composite laminates. Part II: Free-edge stress solutions and basic characteristics", ASME J. Appl. Mech., 49(3), 549-560. crossref(new window)

40.
Wang, S.S. and Choi, I. (1982b), "Boundary-layer effects in composite laminates. Part I: Free-edge stress singularities", ASME J. Appl. Mech., 49(3), 541-548. crossref(new window)

41.
Wang, X. and Li, S.J. (1992), "Analytical solution for interlaminar stresses in a multilaminated cylindrical shell under thermal and mechanical loads", Int. J. Solid. Struct., 29(10), 1293-1302. crossref(new window)

42.
Wang, X., Cai, W. and Yu, Z.Y. (2002), "An analytic method for interlaminar stress in a laminated cylindrical shell", Mech. Adv. Mater. Struct., 9(2), 119-131. crossref(new window)

43.
Whitcomb, J.D., Raju, I.S. and Goree, J.G. (1982), "Reliability of the finite element method for calculating free edge stresses in composite laminates", Comput. Struct., 15(1), 23-37. crossref(new window)

44.
Wu, H. and Yan, X. (2005), "Interlaminar stress modeling of composite laminates with finite element method", J. Reinf. Plast. Compos., 24(3), 235-258. crossref(new window)

45.
Wu, Z. and Chen, W. (2010), "A global-local higher order theory including interlaminar stress continuity and $C^0$ plate bending element for cross-ply laminated composite plates", Comput. Mech., 45(5), 387-400. crossref(new window)