JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Description of reversed yielding in thin hollow discs subject to external pressure
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Description of reversed yielding in thin hollow discs subject to external pressure
Alexandrov, Sergei E.; Pirumov, Alexander R.; Jeng, Yeau-Ren;
 Abstract
This paper presents an elastic/plastic model that neglects strain hardening during loading, but accounts for the Bauschinger effect. These mathematical features of the model represent reasonably well the actual behavior of several materials such as high strength steels. Previous attempts to describe the behavior of this kind of materials have been restricted to a class of boundary value problems in which the state of stress in the plastic region is completely controlled by the yield stress in tension or torsion. In particular, the yield stress is supposed to be constant during loading and the forward plastic strain reduces the yield stress to be used to describe reversed yielding. The new model generalizes this approach on plane stress problems assuming that the material obeys the von Mises yield criterion during loading. Then, the model is adopted to describe reversed yielding in thin hollow discs subject to external pressure.
 Keywords
bauschinger effect;Mises yield criterion;thin disc;new material model;
 Language
English
 Cited by
 References
1.
Alexandrov, S. (2015), Elastic/Plastic Discs Under Plane Stress Conditions, Springer, Heidelberg, Germany.

2.
Alexandrov, S. and Hwang, Y.M. (2011), "Influence of Bauschinger effect on springback and residual stresses in plane strain pure bending", Acta Mech., 220(1-4), 47-59. crossref(new window)

3.
Alexandrov, S., Jeong, W. and Chung, K. (2016), "Descriptions of reversed yielding in internally pressurized tubes", ASME J. Press. Ves. Technol., 138(1), Paper 011204.

4.
Chen, P.C.T. (1986), "The Bauschinger and hardening effect on residual stresses in an autofrettaged thick - walled cylinder", ASME J. Press. Ves. Technol., 108, 108-112. crossref(new window)

5.
Cohen, T., Masri, R. and Durban, D. (2009), "Analysis of circular hole expansion with generalized yield criteria", Int. J. Solid. Struct., 46, 3643-3650. crossref(new window)

6.
Findley, W.N. and Reed, R.M. (1983), "Fatigue of autofrettaged thick tubes: closed and open ends; as received and honed", ASME J. Eng. Mater. Technol., 105, 95-201.

7.
Franklin, G.J. and Morrison, J.L.M. (1960), "Autofrettage of cylinders: prediction of pressure/ external expansion curves and calculation of residual stresses", Proc. Inst. Mech. Eng., 174, 947-974. crossref(new window)

8.
Hill, R. (1950), The Mathematical Theory of Plasticity, Clarendon Press, Oxford.

9.
Milligan, R.V., Koo, W.H. and Davidson, T.E. (1966), "The Bauschinger effect in a high strength steel", ASME J. Basic Eng., 88 (2), 480-488. crossref(new window)

10.
Prager, W. (1956), "A new method of analyzing stresses and strains in work-hardening", ASME J. Appl. Mech., 23, 493-496.

11.
Rees, D.W.A. (1981), "Anisotropic hardening theory and the Bauschinger effect", J. Strain Anal., 16, 85-95. crossref(new window)

12.
Rees, D.W.A. (2006), Basic Engineering Plasticity, Elsevier, Amsterdam.

13.
Rees, D.W.A. (2007), "Descriptions of reversed yielding in bending", Proc. IMechE Part C: J. Mech. Eng. Sci., 221, 981-991.

14.
Rees, D.W.A. (2009), "Descriptions of reversed yielding of a solid circular bar in torsion", Proc. IMechE Part C: J. Mech. Eng. Sci., 223, 557-571. crossref(new window)