JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Yield function of the orthotropic material considering the crystallographic texture
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Yield function of the orthotropic material considering the crystallographic texture
Erisov, Yaroslav A.; Grechnikov, Fedor V.; Surudin, Sergei V.;
 Abstract
On the basis of the energy approach it is reported a development of the yield function and the constitutive equations for the orthotropic material with consideration of the crystal lattice constants and parameters of the crystallographic texture for the general stress state. For practical use in sheet metal forming analysis it is considered different loading scenarios: plane stress and plane strain states. Using the proposed yield function, the influence of single ideal components on the shape of yield surface was analyzed. The six texture components investigated here were cube, Goss, copper, brass, S and rotated cube, as these components are typically observed in rolled sheets from FCC alloys.
 Keywords
anisotropy;plasticity;yield function;texture;crystallographic orientation;plane stress;plane strain;yield surface;rolled sheet;
 Language
English
 Cited by
1.
CAD system of design and engineering provision of die forming of compressor blades for aircraft engines, IOP Conference Series: Earth and Environmental Science, 2017, 87, 082024  crossref(new windwow)
2.
Influence of Material Structure Crystallography on its Formability in Sheet Metal Forming Processes, IOP Conference Series: Materials Science and Engineering, 2017, 286, 012021  crossref(new windwow)
3.
Research of the process of axisymmetric forming of thin-walled flat blanks into the conical parts with minimal thickness variation, IOP Conference Series: Materials Science and Engineering, 2017, 177, 012122  crossref(new windwow)
 References
1.
Adamesku, P.A., Geld, R.A. and Mityshov, E.A. (1985), Anisotropy of Physical Properties of Metals, Mashinostroenie, Moscow, Russia. (in Russian)

2.
Arysenskii, Yu.М., Grechnikov, F.V. and Аryshenskii, V.Yu. (1990), "The requirements determination to the sheet anisotropy depending on further forming", Kuznechno-Shtampovochnoe Proizvodstvo, 3, 16-19. (in Russian)

3.
Aryshenskii, V.Yu., Grechnikov, F.V. and Zaitsev, V.М. (1990), "The determination of the material plastic deviator of the anisotropic medium by its texture parameters", Izvestia Akademii nauk SSSR. Metally, 4, 158-162. (in Russian)

4.
Aryshenskii, Yu.М., Kaluzhskii, I.I. and Uvarov, V.V. (1969), "Some issues of the plasticity theory of orthotropic medium", Izvestiya VUZ, Aviatsionnaya Tekhnika, 2, 15-18. (in Russian)

5.
Backofen, W. (1972), Deformation Processing, Addison-Wesley Longman.

6.
Banabic, D, Bunge, H.J., Pohlandt, K. and Tekkaya, A.E. (2000), Formability Of Metallic Materials: Plastic Anisotropy, Formability Testing, Forming Limits, Springer, Berlin, Germany.

7.
Banabic, D. (2010), Sheet Metal Forming Processes. Constitutive Modelling and Numerical Simulation, Springer, Berlin, Germany.

8.
Banabic, D., Aretz, H., Comsa, D.S. and Paraianu, L. (2005), "An improved analytical description of orthotropy in metallic sheets", Int. J. Plasticity, 21, 493-512. crossref(new window)

9.
Banabic, D., Barlat, F., Cazacu, O. and Kuwabara, T. (2010), "Advances in anisotropy and formability", Int. J. Mater. Form., 3, 165-189. crossref(new window)

10.
Barlat, F. and Lian, J.A. (1989), "Plastic behavior and stretchability of sheet metals. Part 1: yield function for orthotropic sheets under plane stress conditions", Int. J. Plasticity, 5, 51-66. crossref(new window)

11.
Barlat, F., Aretz, H., Yoon, J.W., Karabrin, M.E., Brem, J.C. and Dick, R.E. (2005), "Linear transformationbased anisotropic yield functions", Int. J. Plasticity, 21, 1009-1039. crossref(new window)

12.
Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H. and Chu, E. (2003), "Plane stress yield function for aluminum alloy sheet. Part 1: Theory", Int. J. Plasticity, 19, 1297-1319. crossref(new window)

13.
Barlat, F., Lege, D.J. and Brem, J.C. (1991), "A six-component yield function for anisotropic materials", Int. J. Plasticity, 7, 693-712. crossref(new window)

14.
Barlat, F., Yoon, J.W. and Cazacu, O. (2007), "On linear transformation of stress tensors for the description of plastic anisotropy", Int. J. Plasticity, 23, 876-896. crossref(new window)

15.
Bron, F. and Besson, J. (2003), "A yield function for anisotropic materials. Application to aluminum alloys", Int. J. Plasticity, 20, 937-963.

16.
Cazacu, O. and Barlat, F. (2001), "Generalization of Drucker's yield criterion to orthotropy", Mathematics and Mechanics of Solids, 6, 613-630. crossref(new window)

17.
Cazacu, O. and Barlat, F. (2003), "Application of representation theory to describe yielding of anisotropic aluminum alloys", Int. J. of Engng. Sci., 41, 1367-1385. crossref(new window)

18.
Choi, S.H., Cho, J.H., Barlat, F., Chung, K., Kwon, J.W. and Oh, K.H. (1999), "Prediction of yield surfaces of textured sheet metals", Metallurgical and materials transactions, 30(A), 377-386. crossref(new window)

19.
Drucker, D.C. (1949), "Relation of experiments to mathematical theories of plasticity", J. Appl. Mech., 16, 349-357.

20.
Engler, O. and Hirsch, J., (2002) "Texture control by thermomechanical processing of AA6xxx Al-Mg-Si sheet alloys for automotive applications - a review", Materials Science and Engineering A, 336, 249-262. crossref(new window)

21.
Hershey, A.V. (1954), "The plasticity of an isotropic aggregate of anisotropic face centered cubic crystals", J. Appl. Mech., 21, 241-249.

22.
Hill, R. (1948), "A theory of the yield and plastic flow of anisotropic metals", Proc. Roy. Soc. London. Ser A., 193, 281-297. crossref(new window)

23.
Hill, R. (1950), The Mathematical Theory of Plasticity, Oxford University Press, New-York, USA.

24.
Hill, R. (1979), "Theoretical plasticity of textured aggregates", Math. Proc. Cambridge Philos. Soc., 85, 179-191. crossref(new window)

25.
Hirsch, J. and Al-Samman, T. (2013) "Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications", Acta Materialia, 61, 818-843. crossref(new window)

26.
Hosford, W.F. (1972), "A generalized isotropic yield criterion", J. Appl. Mech. Trans., ASME, 39, 607-609. crossref(new window)

27.
Hosford, W.F. (2005), Mechanical Behavior of Materials, Cambridge University Press, New-York, USA.

28.
Huber, M.T. (1904), "Die spezifische formanderungsarbeit als MaB der anstrengung eines materials", Czasopismo Techniczne, 22, 181.

29.
Hutchinson, W.B., Oscarsson, A. and Karlsson, A. (1989), "Control of microstructure and earing behaviour in aluminium alloy AA 3004 hot bands", Mater. Sci. Tech., 5, 1118-1127. crossref(new window)

30.
Karafillis, A.P. and Boyce, M.C. (1993), "A general anisotropic yield criterion using bounds and a transformation weighting tensor", J. Mech. Phys. Solid., 41, 1859-1886. crossref(new window)

31.
Kusiak, J., Szeliga, D. and Sztangret, L. (2012), "Modelling techniques for optimizing metal forming processes", Eds. Lin, D. Balint and M. Pietrzyk, Microstructure Evolution In Metal Forming Processes, Woodhead Publishing, Cambridge, UK.

32.
Landolt-Bornstein (1966), Numerical data and functional relationships in science and technology. New Series. Group III: Crystal and solid state physics. Volume 1: Elastic, piezoelectric, piezooptic and electrooptic constants of crystals, Springer, Berlin, Germany.

33.
Mises, R. (1913), "Mechanik der festen Korper im plastisch deformablen Zustand", Gottinger Nachrichten, Mathematisch-Physikalische, 1(4), 582-592.

34.
Mises, R. (1928), "Mechanik der plastischen Formanderung von Kristallen", ZAM, 8, 161-185. crossref(new window)

35.
Moayyedian, F. and Kadkhodayan, M. (2016), "An advanced criterion based on non-AFR for anisotropic sheet metals", Struct. Eng. Mech., 57(6), 1015-1038. crossref(new window)

36.
Nakamachi, E. and Xie, C.L. (2001) "Texture design of high-strength and high-formability steel sheet by using finite element and optimization method", Ed. K.I. Mori, Simulation of Materials Processing: Theory, Methods and Applications, Swets & Zeitlinger, Lisse, Netherlands.

37.
Piehler, H.R. (2009), "Crystal-plasticity fundamentals", ASM Handbook, 22A(#05215G), 232-238.

38.
Saint-Venant, B. (1870), "Memoire sur l'establissement des equations differentielles des mouvements interieurs operes dans les corps solides ductiles au dela des limites ou I' elasticite pourrait les ramener a leur premier etat", Comptes Rendus hebdomadaire s des Seances de l'A cademie des Sciences, 70, 473-480.

39.
Soare, S. and Banabic, D. (2008), "About mechanical data required to describe the anisotropy of th.in sheets to correctly predict the earing of deep-drawn cups", Int. J. Plasticity, 4, 34-37.

40.
Tresca, H. (1864), "Sur l'Ecoulement des Corps Solides Soumis a de Fortes Pressions", Comptes rendus de l'Academie des Sciences, 59, 754.

41.
Truszkowski, W. (2001), The Plastic Anisotropy in Single Crystals and Polycrystalline Metals, Springer, Netherlands.

42.
Woodthorpe, J. and Pearce, R. (1970), "The anomalous behavior of aluminum sheet under balance biaxial tension", Int. J. Mech. Sci., 12, 341-347. crossref(new window)

43.
Zhao, Z., Mao, W., Roters, F. and Raabe, D. (2004), "A texture optimization study for minimum earing in aluminium by use of a texture component crystal plasticity finite element method", Acta Materialia, 52, 1003-1012. crossref(new window)