JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Stress analysis of rotating annular hyperbolic discs obeying a pressure-dependent yield criterion
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Stress analysis of rotating annular hyperbolic discs obeying a pressure-dependent yield criterion
Jeong, Woncheol; Chung, Kwansoo;
 Abstract
The Drucker-Prager yield criterion is combined with an equilibrium equation to provide the elastic-plastic stress distribution within rotating annular hyperbolic discs and the residual stress distribution when the angular speed becomes zero. It is verified that unloading is purely elastic for the range of parameters used in the present study. A numerical technique is only necessary to solve an ordinary differential equation. The primary objective of this paper is to examine the effect of the parameter that controls the deviation of the Drucker-Prager yield criterion from the von Mises yield criterion and the geometric parameter that controls the profile of hyperbolic discs on the stress distribution at loading and the residual stress distribution.
 Keywords
rotating annular disc;variable thickness;plastic yielding;Drucker-Prager yield criterion;
 Language
English
 Cited by
1.
Stress and strain fields in rotating elastic/plastic annular disks of pressure-dependent material, Mechanics Based Design of Structures and Machines, 2017, 1  crossref(new windwow)
 References
1.
Alexandrova, N. and Alexandrov, S. (2004), "Elastic-plastic stress distribution in a plastically anisotropic rotating disk", Tran. ASME J. Appl. Mech., 71(3), 427-429. crossref(new window)

2.
Alexandrov, S., Jeng, Y. R. and Lomakin, E. (2011), "Effect of pressure-dependency of the yield criterion on the development of plastic zones and the distribution of residual stresses in thin annular disks", J. Appl. Mech.-T, ASME, 78(3), 031012. crossref(new window)

3.
Callioglu, H., Topcu, M. and Tarakcilar, A.R. (2006), "Elastic-plastic stress analysis of an orthotropic rotating disc", Int. J. Mech. Sci., 48, 985-990. crossref(new window)

4.
Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis for limit design", Q. Appl. Math., 10, 157-165. crossref(new window)

5.
Eraslan, A.N. (2002), "Inelastic deformations of rotating variable thickness solid disks by Tresca and von Mises criteria", Int. J. Comp. Eng. Sci., 3(1), 89-101. crossref(new window)

6.
Eraslan, A.N. (2003), "Elastoplastic deformations of rotating parabolic solid disks using Tresca's yield criterion", Eup. J. Mech. A/Solid., 22, 861-874. crossref(new window)

7.
Eraslan, A.N. and Orcan, Y. (2002a), "Elastic-plastic deformation of a rotating solid disk of exponentially varying thickness", Mech. Mater., 34, 423-432. crossref(new window)

8.
Eraslan, A.N. and Orcan, Y. (2002b), "On the rotating elastic-plastic solid disks of variable thickness having concave profiles", Int. J. Mech. Sci., 44, 1445-1466. crossref(new window)

9.
Guven, U. (1992), "Elastic-plastic stresses in a rotating annular disk of variable thickness and variable density", Int. J. Mech. Sci., 34(2), 133-138. crossref(new window)

10.
Guven, U. (1998), "Elastic-plastic stress distribution in a rotating hyperbolic disk with rigid inclusion", Int. J. Mech. Sci., 40, 97-109. crossref(new window)

11.
Hojjati, M.H. and Hassani, A. (2008), "Theoretical and numerical analyses of rotating discs of non-uniform thickness and density", Int. J. Pres. Ves. Pip., 85, 694-700. crossref(new window)

12.
Kao, A.S., Kuhn, H.A., Spitzig, W.A. and Richmond, O. (1990), "Influence of superimposed hydrostatic pressure on bending fracture and formability of a low carbon steel containing globular sulfides", Tran. ASME J. Eng. Mater. Technol., 112, 26-30. crossref(new window)

13.
Liu, P.S. (2006), "Mechanical behaviors of porous metals under biaxial tensile loads", Mater. Sci. Eng., A422, 176-183.

14.
Orcan, Y. and Eraslan, A.N. (2002), "Elastic-plastic stresses in linearly hardening rotating solid disks of variable thickness", Mech. Res. Commun., 29, 269-281. crossref(new window)

15.
Pirumov, A., Alexandrov, S. and Jeng, Y.R. (2013), "Enlargement of a circular hole in a disc of plastically compressible material", Acta Mech., 224(12), 2965-2976. crossref(new window)

16.
Rees, D.W.A. (1999), "Elastic-plastic stresses in rotating discs by von Mises and Tresca", ZAMM, 19, 281-288.

17.
Spitzig, W.A., Sober, R.J. and Richmond, O. (1976), "The effect of hydrostatic pressure on the deformation behavior of maraging and HY-80 steels and its implications for plasticity theory", Metallurg. Tran., 7A, 1703-1710.

18.
Timoshenko, S. and Goodier, J.N. (1970), Theory of Elasticity, 3rd Edition, McGraw-Hill, New-York, USA.

19.
Wilson, C.D. (2002), "A critical reexamination of classical metal plasticity", Tran. ASME J. Appl. Mech., 69, 63-68. crossref(new window)

20.
You, L.H., Tang, Y.Y., Zhang, J.J. and Zheng, C.Y. (2000), "Numerical analysis of elastic-plastic rotating disks with arbitrary variable thickness and density", Int. J. Solid Struct., 37, 7809-7820. crossref(new window)