JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Vibration analysis of a shear deformed anti-symmetric angle-ply conical shells with varying sinusoidal thickness
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Vibration analysis of a shear deformed anti-symmetric angle-ply conical shells with varying sinusoidal thickness
Javed, Saira; Viswanathan, K.K.; Aziz, Z.A.; Lee, J.H.;
 Abstract
The study is to investigate the free vibration of antisymmetric angle-ply conical shells having non-uniform sinusoidal thickness variation. The arbitrarily varying thickness is considered in the axial direction of the shell. The vibrational behavior of shear deformable conical shells is analyzed for three different support conditions. The coupled differential equations in terms displacement and rotational functions are obtained. These displacement and rotational functions are invariantly approximated using cubic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration characteristic of the shells is examined for cone angle, aspect ratio, sinusoidal thickness variation, layer number, stacking sequence, and boundary conditions.
 Keywords
vibration;anti-symmetric;conical shell;splines;thickness variation;
 Language
English
 Cited by
1.
The GDQ method for the free vibration analysis of arbitrarily shaped laminated composite shells using a NURBS-based isogeometric approach, Composite Structures, 2016, 154, 190  crossref(new windwow)
 References
1.
Akbari, M., Kiani, Y., Aghdam, M.M. and Eslami, M.R. (2014), "Free vibration of FGM Levy conical panels", Compos. Struct., 116, 732-746. crossref(new window)

2.
Alibeigloo, A. (2009), "Static and vibration analysis of axi-symmetric angle-ply laminated cylindrical shell using state space differential quadrature method", Int. J. Press. Ves. Pip., 86, 738-747. crossref(new window)

3.
Ansari, R., Faghih Shojaei, M., Rouhi, H. and Hosseinzadeh, M. (2015), "A novel variational numerical method for analyzing the free vibration of composite conical shells", Appl. Math. Model., 39(10), 2849-2860. crossref(new window)

4.
Chernobryvko, M.V., Avramov, K.V., Romanenko, V.N., Batutina, T.J. and Tonkonogenko, A.M. (2014), "Free linear vibrations of thin axisymmetric parabolic shells", Meccanica, 49(12), 2839-2845. crossref(new window)

5.
Dey, S. and Karmakar, A. (2012), "Natural frequencies of delaminated composite rotating conical shells-A finite element approach", Finite Elem. Anal. Des., 56, 41-51. crossref(new window)

6.
Firouz-Abadi, R.D., Rahmanian, M. and Amabili, M. (2014), "Free vibration of moderately thick conical shells using a higher order shear deformable theory", J. Vib. Acoust., 136(5), 051001. crossref(new window)

7.
George, H.S. (1999), Laminar Composites, Butterworth-Heinemann publications, USA.

8.
Gibson, R.F. (1994), Principles of Composite Material Mechanics, McGraw-Hill, Singapore.

9.
Jin, G., Ma, X., Shi, S., Ye, T. and Liu, Z. (2014), "A modified Fourier series solution for vibration analysis of truncated iconical shells with general boundary conditions", Appl. Acoust., 85, 82-96. crossref(new window)

10.
Khare, R.K., Kant, T. and Garg, A.K. (2004), "Free vibration of composite and sandwich laminates with a higher-order facet shell element", Compos. Struct., 65(3-4), 405-418. crossref(new window)

11.
Kang, J.H. (2014), "Vibration analysis of complete conical shells with variable thickness", Int. J. Struct. Stab. Dyn., 14(4), 1450001. crossref(new window)

12.
Lal, R. and Rani, R. (2014), "Mode shapes and frequencies of radially symmetric vibrations of annular sandwich plates of variable thickness", Acta Mechanica, 225(6), 1565-1580. crossref(new window)

13.
Liu, M., Liu, J. and Cheng, Y. (2014), "Free vibration of a fluid loaded ring-stiffened conical shell with variable thickness", J. Vib. Acoust., 136, 051003-1-051003-10. crossref(new window)

14.
Ma, X., Jin, G., Xiong, Y. and Liu, Z. (2014), "Free and forced vibration analysis of coupled conical-cylindrical shells with arbitrary boundary conditions", Int. J. Mech. Sci., 88, 122-137. crossref(new window)

15.
Madabhusi-Raman, P. and Davalos, J.F. (1996), "Static shear correction factor for laminated rectangular beams", Compos. Part B: Eng., 27(3-4), 285-293. crossref(new window)

16.
Pai, P.F. and Schulz, M.J. (1999), "Shear correction factors and an energy-consistent beam theory", Int. J. Solid. Struct., 36, 1523-1540. crossref(new window)

17.
Patel, B.P., Singh, S. and Nath, Y. (2008), "Postbuckling characteristics of angle-ply laminated truncated circular conical shells", Commun. Nonlin. Sci. Numer. Simul., 13(7), 1411-1430. crossref(new window)

18.
Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, CRC Press, New York.

19.
Selahi, E., Setoodeh, A.R. and Tahani, M. (2014), "Three-dimensional transient analysis of functionally graded truncated conical shells with variable thickness subjected to an asymmetric dynamic pressure", Int. J. Press. Ves. Pip., 119, 29-38. crossref(new window)

20.
Shakouri, M. and Kouchakzadeh, M.A. (2014), "Free vibration analysis of joined conical shells: Analytical and experimental study", Thin Wall. Struct., 85, 350-358. crossref(new window)

21.
Sofiyev, A.H., Omurtag, M.H. and Schnack, E. (2009), "The vibration and stability of orthotropic conical shells with non-homogeneous material properties under a hydrostatic pressure", J. Sound Vib., 319, 963-983. crossref(new window)

22.
Sofiyev, A.H. (2014), "Large-amplitude vibration of non-homogeneous orthotropic composite truncated conical shell", Compos. Part B: Eng., 61, 365-374. crossref(new window)

23.
Sofiyev, A.H. and Kuruoglu, N. (2014), "Combined influences of shear deformation, rotary inertia and heterogeneity on the frequencies of cross-ply laminated orthotropic cylindrical shells", Compos. Part B: Eng., 66, 500-510. crossref(new window)

24.
Sofiyev, A.H. (2016), "Buckling of heterogeneous orthotropic composite conical shells under external pressures within the shear deformation theory", Compos. Part B: Eng., 84, 175-187.

25.
Su, Z., Jin, G. and Ye, T. (2014), "Three-dimensional vibration analysis of thick functionally graded conical, cylindrical shell and annular plate structures with arbitrary elastic restraints", Compos. Struct., 118, 432-447. crossref(new window)

26.
Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories", Compos. Part B: Eng., 67, 490-509. crossref(new window)

27.
Tornabene, F., Fantuzzi, N., Viola, E. and Batra, R.C. (2015), "Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory", Compos. Struct., 119, 67-89. crossref(new window)

28.
Viswanathan, K.K., Saira, J., Izliana, A.B. and Zainal, A.A. (2015), "Free vibration of anti-symmetric angleply laminated conical shells", Compos. Struct., 122, 488-495. crossref(new window)

29.
Viswanathan, K.K. and Kim, K.S. (2008), "Free vibration of antisymmetric angle-ply laminated plates including shear deformation: spline method", Int. J. Mech. Sci., 50, 1476-1485. crossref(new window)

30.
Wu, S., Qu, Y. and Hua, H. (2015), "Free vibration of laminated orthotropic conical shell on Pasternak foundation by a domain decomposition method", J. Compos. Mater., 49(1), 35-52. crossref(new window)

31.
Xie, X., Jin, G., Ye, T. and Liu, Z. (2014), "Free vibration analysis of functionally graded conical shells and annular plates using the Haar wavelet method", Appl. Acoust., 85, 130-142. crossref(new window)

32.
Zarouni, E., Jalilian Rad, M. and Tohidi, H. (2014), "Free vibration analysis of fiber reinforced composite conical shells resting on Pasternak-type elastic foundation using Ritz and Galerkin methods", Int. J. Mech. Mater. Des., 10(4), 421-438. crossref(new window)

33.
Zhang, B., He, Y., Liu, D., Shen, L. and Lei, J. (2015), "Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory", Compos. Struct., 119, 578-597. crossref(new window)