JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of recycled glass powder on asphalt concrete modification
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of recycled glass powder on asphalt concrete modification
Bilondi, M. Pourabbas; Marandi, S.M.; Ghasemi, F.;
 Abstract
During recent years researchers performed large effort to increase the service life and asphalt stability of the roads against traffic loads and weather conditions. Investigations carried out in various aspects such as changes in gradation, addition of various additives, changes in asphalt textures and etc. The objective of this research is to evaluate the advantages of adding recycled glass powder (RGP), Crumb Rubber (CR), styrene-butadiene rubber (SBR) and styrene butadiene styrene (SBS) to base bitumen with grade of 60/70 for modification of asphalt concrete. Initial studies conducted for determining the physical properties of bitumen and modifiers. A series of asphalt concrete samples made using various combinations of RGP, CR, SBR, SBS and base bitumen. All samples tested using Indirect Tensile Strength (ITS), Indirect Tensile Strength Modulus (ITSM) and Marshall Stability Tests. The new data compared with the results of control samples. The results showed that replacing RGP with known polymers improved ITS and ITSM results considerably. Also the Marshall Stability of modified mixtures using RGP is more than what is found for the base blend. Ultimately, the new RGP modifier had a huge impact on pavement performance and results in high flexibility which can be concluded as high service life for the new modified asphalt concrete.
 Keywords
asphalt concrete;ITS;SBS;SBR;CR;RGP;
 Language
English
 Cited by
 References
1.
AASHTO T283 (2007), Standard Method of Test for Resistance of Compacted Asphalt Mixtures to Moisture-induced Damage, American Association of State and Highway Transportation Officials.

2.
Airey, G.D. (2003), "Rheological properties of styrene butadiene styrene polymer modified road bitumens", Fuel, 82(14), 1709-19. crossref(new window)

3.
Airey, G.D., Singleton T.M. and Collop J. (2002), "Properties of polymer modified bitumen after rubberbitumen interaction", J. Mater. Civil Eng., 14(4), 344-354. crossref(new window)

4.
Ayatollahi, M.R. and Pirmohammad, S. (2013), "Temperature effects on brittle fracture in cracked asphalt concrete", Struct. Eng. Mech., 45(1), 19-32. crossref(new window)

5.
Baskandi, B. (2015), "Influence of construction parameters on performance of dense graded bituminous mixes", IOSR J. Mech. Civil Eng., 12(1), 64-78.

6.
Chunfa, O., Qun, G., Yutao, S. and Xiaoqian. S. (2012), "Compatibilizer in waste tire powder and lowdensity polyethylene blends and the blends modified asphalt", Appl. Polym., 123(1), 485-492. crossref(new window)

7.
Colom, X., Carrillo, F. and Canavate, J. (2007), "Composites reinforced with reused tyres: surface oxidant treatment to improve the interfacial compatibility", Compos. Part A, 38(1), 44-50.

8.
Cong, Y., Liao, K., Huang, W. and Zhai, Y. (2006), "Study on technical parameters of SBS modified asphalt", Petrol Sci. Technol., 24(5), 507-12. crossref(new window)

9.
Cortizo, M.S., Larsen, D.O. and Bianchetto, H. (2004), "Effect of the thermal degradation of SBS copolymers during the ageing of modified asphalts", Polym. Degrad. Stab., 86(2), 275-282. crossref(new window)

10.
Hossain, M., Swartz, S. and Hoque, E. (1999), "Fracture and tensile characteristics of asphalt-rubber concrete", J. Mater. Civil Eng., 11(4), 287-294. crossref(new window)

11.
Huang B., Li, G. and Shu, X. (2003), "Analytical modeling and experimental study of tensile strength of asphalt concrete composite at low temperatures", Compos. Part B., 34(8), 705-714. crossref(new window)

12.
Liang, J.F., Yang, Z.P., Yi, P.H. and Wang, J.B. (2015), "Mechanical properties of Recycled Fine Glass aggregate concrete under uniaxial loading", Comput. Concrete, 16(2), 275-285. crossref(new window)

13.
Lu, X.H. and Isacsson, U. (1997), "rheological characterization of styrene-butadiene-styrene copolymer modified bitumens", Constr. Build Mater., 11(1), 23-32. crossref(new window)

14.
Lu, X.H. and Isacsson, U. (1998), "Chemical and rheological evaluation of aging properties of SBS polymer modified bitumens", Fuel, 77(9-10), 961-972. crossref(new window)

15.
Ma, F., Sha, A., Lin, R., Huang, Y. and Wang, C. (2016), "Greenhouse gas emissions from asphalt pavement construction: a case study in China", Int. J. Environ. Res. Public Hlth., 13(3), 351. crossref(new window)

16.
Morales, M.G., Partal, P., Navarro, F.J., Boza, M. and Gallegos, C. (2007), "Processing, rheology, and storage stability of recycled EVA/LDPE modified bitumen", Polym. Eng. Sci., 47(2), 181-91. crossref(new window)

17.
Mull, M.A., Stuart, K. and Yehia, A. (2002), "Fracture resistance characterization of chemically modified crumb Rubber asphalt pavement", J. Mater. Sci., 37(3), 557-566. crossref(new window)

18.
Navarro, F.J., Partal, P., Martinez-Boza, F.J. and Gallegos, C. (2010), "Novel recycled polyethylene/ground tire rubber /bitumen blends for use in roofing applications: thermo-mechanical properties", Polym. Test., 29(5), 588-595. crossref(new window)

19.
Navarro, F.J., Partal, P., Martinez-Boza, F. and Gallegos, C. (2004), "Thermo-rheo-logical behavior and storage stability of ground tire rubber-modified bitumens", Fuel., 83, 2041-2049. crossref(new window)

20.
Navarro, F.J., Partal, P., Martinez-Boza, F. and Gallegos, C. (2005), "Influence of crumb rubber concentration on the rheological behavior of a crumb rubber modified bitumen", Energy Fuel., 19(5), 1984-1990. crossref(new window)

21.
Ouyang, C., Wang, S.F. and Zhang, Y. (2006), "Thermo-rheological properties and storage stability of SEBS/kaolinite clay compound modified asphalts", Eur. Polym. J., 42(2), 446-57. crossref(new window)

22.
Pirmohammad, S. and Kiani, A. (2016), "Impact of temperature cycling on fracture resistance of asphalt concretes", Comput. Concrete, 17(4), 541-552. crossref(new window)

23.
Pradyumna, T.A., Mittal, A. and Jain, P.K. (2013), "Characterization of Reclaimed Asphalt Pavement (RAP) for use in bituminous road construction", Procedia-Soc. Behav. Sci., 104, 1149-1157. crossref(new window)

24.
Qadir, A. and Qadir, A. (2014), "Rutting performance of polypropylene modified asphalt concrete", IJCE, 12(3), 304-312.

25.
Rogue, R., Zhang, Z. and Sankar, B. (1998), "Determination of crack growth rate parameters of asphalt mixtures using the superpave indirect tension test", IDT. J Asphalt Paving Technol., 68, 404-33.

26.
Sadeghpour Galooyak, S., Dabir, B., Nazarbeygi, A.E. and Moeini, A. (2010), "Rheological properties and storage stability of bitumen / SBS / montmorillonite composites", Constr. Build. Mater., 24(3), 300-307. crossref(new window)

27.
Shu, X. and Huang, B. (2008), "Micromechanics-based dynamic modulus prediction of polymeric asphalt concrete mixtures", Compos. Part B., 398(4), 704-713.

28.
Sun, D. and Lu, W. (2006), "Phase morphology of polymer modified road asphalt", Petrol Sci. Technol., 24(7), 839-49. crossref(new window)

29.
Wen, G., Zhang, Y. and Zhang, Y.X. (2002), "Rheological characterization of storage-stable SBS-modified asphalt", Polym Test., 21(3), 295-302. crossref(new window)

30.
Zhang, Z., Rogue, R., Birgisson, B. and Sangpetngam, B. (2001), "Identification and verification of a suitable crack growth law", J. Asphalt Pav. Technol., 70, 206-41.