JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A unified formulation for static behavior of nonlocal curved beams
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A unified formulation for static behavior of nonlocal curved beams
Tufekci, Ekrem; Aya, Serhan A.; Oldac, Olcay;
 Abstract
Nanobeams are widely used as a structural element for nanodevices and nanomachines. The development of nano-sized machines depends on proper understanding of mechanical behavior of these nano-sized beam elements. Small length scales such as lattice spacing between atoms, surface properties, grain size etc. are need to be considered when applying any classical continuum model. In this study, Eringen`s nonlocal elasticity theory is incorporated into classical beam model considering the effects of axial extension and the shear deformation to capture unique static behavior of the nanobeams under continuum mechanics theory. The governing differential equations are obtained for curved beams and solved exactly by using the initial value method. Circular uniform beam with concentrated loads are considered. The displacements, slopes and the stress resultants are obtained analytically. A detailed parametric study is conducted to examine the effect of the nonlocal parameter, mechanical loadings, opening angle, boundary conditions, and slenderness ratio on the static behavior of the nanobeam.
 Keywords
curved nanobeams;nonlocal elasticity;in-plane statics;exact solution;initial value method;
 Language
English
 Cited by
1.
Modeling and analysis of out-of-plane behavior of curved nanobeams based on nonlocal elasticity, Composites Part B: Engineering, 2017, 119, 184  crossref(new windwow)
 References
1.
Abramowitz, M. and Stegun, I.A. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Printing, Dover, New York, NY, USA.

2.
Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. crossref(new window)

3.
Alotta, G., Failla, G. and Zingales, M. (2014), "Finite element method for a nonlocal Timoshenko beam model", Finite Elem. Anal. Des., 89, 77-92. crossref(new window)

4.
Arash, B., Wang, Q. and Duan, W.H. (2011), "Detection of gas atoms via vibration of graphenes", Phys. Lett. A, 375(24), 2411-2415. crossref(new window)

5.
Behera, L. and Chakraverty, S. (2014), "Free vibration of nonhomogeneous Timoshenko nanobeams", Meccanica, 49(1), 51-67. crossref(new window)

6.
Berrabah, H.M., Tounsi, A., Semmah, A. and Bedia, E.A.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. crossref(new window)

7.
Bradshaw, R.D., Fisher, F.T. and Brinson, L.C. (2003), "Fiber waviness in nanotube-reinforced polymer composites-II: modeling via numerical approximation of the dilute strain concentration tensor", Compos. Sci. Technol., 63(11), 1705-1722. crossref(new window)

8.
Craighead, H.G. (2000), "Nanoelectromechanical systems", Science, 290(5496), 1532-153. crossref(new window)

9.
Ekinci, K.L. (2005), "Electromechanical transducers at the nanoscale: Actuation and sensing of motion in nanoelectromechanical systems (NEMS)", Small, 1(8-9), 786-797. crossref(new window)

10.
Eringen, A.C. (1983), "Linear theory of nonlocal elasticity and dispersion of plane waves", J. Appl. Phys., 54, 4703-4710. crossref(new window)

11.
Fisher, F.T., Bradshaw, R.D. and Brinson, L.C. (2003), "Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties", Compos. Sci. Technol., 63(11), 1689-1703. crossref(new window)

12.
Guo, R., Barisci, J.N., Innis, P.C., Too, C.O., Wallace, G.G. and Zhou, D. (2000), "Electrohydrodynamic polymerization of 2-methoxyaniline-5-sulfonic acid", Synthetic Met., 114(3), 267-272. crossref(new window)

13.
Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solid. Struct., 48(18), 2496-2510. crossref(new window)

14.
Hu, Y.G., Liew, K.M. and Wang, Q. (2009), "Nonlocal elastic beam models for flexural wave propagation in double-walled carbon nanotubes", J. Appl. Phys., 106(4):044301. crossref(new window)

15.
Huang, C., Ye, C., Wang, S., Stakenborg, T. and Lagae, L. (2012), "Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection", Appl. Phys. Lett., 100, 173114. crossref(new window)

16.
Joshi, A.Y., Sharma, S.C. and Harsha, S.P. (2010) "Dynamic analysis of a clamped wavy single walled carbon nanotube based nanomechanical sensors", J. Nanotechnol. Eng. Med., 1, 031007-7. crossref(new window)

17.
Kong, J., Franklin, N.R., Zhou, C.W., Chapline, M.G., Peng, S., Cho, K. and Dai, H.J. (2000), "Nanotube molecular wires as chemical sensors", Science, 287, 622-625. crossref(new window)

18.
Kong, X.Y., Ding, Y., Yang, R. and Wang, Z.L. (2004), "Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts", Science, 303, 1348-1351. crossref(new window)

19.
Li, C. (2013), "Size-dependent thermal behaviors of axially traveling nanobeams based on a strain gradient theory", Struct. Eng. Mech., 48(3), 415-434. crossref(new window)

20.
Li, C. (2014), "A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries", Compos. Struct., 118, 607-621. crossref(new window)

21.
Li, C. and Chou, T.W. (2003), "Single-walled carbon nanotubes as ultra-high frequency nanomechanical resonators", Phys. Rev. B, 68(7), 073405. crossref(new window)

22.
Li, C., Li, S., Yao, L.Q. and Zhu, Z.K. (2015a),"Nonlocal theoretical approaches and atomistic simulations for longitudinal free vibration of nanorods/nanotubes and verification of different nonlocal models", Appl. Math. Model., 39, 4570-4585. crossref(new window)

23.
Li, C., Yao, L.Q., Chen, W.Q and Li, S. (2015b), "Comments on nonlocal effects in nano-cantilever beams", Int. J. Eng. Sci., 87, 47-57. crossref(new window)

24.
Liu, Y.P. and Reddy, J.N. (2011), "A nonlocal curved beam model based on a modified couple stress theory", Int. J. Struct. Stab. Dyn., 11(3), 495-512.

25.
Mayoof, F.N. and Hawwa, M.A. (2009), "Chaotic behavior of a curved carbon nanotube under harmonic excitation", Chaos Solit. Fract., 42(3), 1860-1867. crossref(new window)

26.
McFarland, A.W. and Colton, J.S. (2005), "Role of material microstructure in plate stiffness with relevance to microcantilever sensors", J. Micromech. Microeng., 15, 1060-1067. crossref(new window)

27.
Paola, M.D., Failla, G. and Zingales, M. (2013), "Non-local stiffness and damping models for shear-deformable beams", Eur. J. Mech. A-Solid., 40, 69-83. crossref(new window)

28.
Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Solid. Struct., 41, 305-312.

29.
Polizzotto, C., Fuschi, P. and Pisano, A.A. (2006), "A nonhomogeneous nonlocal elasticity model", Eur. J. Mech. A-Solid., 25(2), 308-333. crossref(new window)

30.
Povstenko, Y.Z. (1995), "Straight disclinations in nonlocal elasticity", Int. J. Eng. Sci., 33(4), 575-582. crossref(new window)

31.
Pradhan, S.C. and Sarkar, A. (2009), "Analyses of tapered fgm beams with nonlocal theory", Struct. Eng. Mech., 32(6), 811-833. crossref(new window)

32.
Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. crossref(new window)

33.
Roukes, M. (2001), "Nanoelectromechanical systems face the future", Phys. World, 14, 25-31

34.
Sudak, L.J. (2003), "Column buckling of multi-walled carbon nanotubes using nonlocal elasticity", J. Appl. Phys., 94, 7281. crossref(new window)

35.
Taghizadeh, M., Ovesy, H.R. and Ghannadpour, S.A.M. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., 54(4) 755-769. crossref(new window)

36.
Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.W. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. crossref(new window)

37.
Tufekci, E. (2001), "Exact solution of free in-plane vibration of shallow circular arches", Int. J. Struct. Stab. Dyn., 1, 409-428. crossref(new window)

38.
Tufekci, E. and Arpaci, A. (2006), "Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations", Struct. Eng. Mech., 22(2), 131-150. crossref(new window)

39.
Wang, L.F. and Hu, H.Y. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B, 71(19) 195412. crossref(new window)

40.
Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 89, 124301.

41.
Wang, Q. and Shindo, Y. (2006), "Nonlocal continuum models for carbon nanotubes subjected to static loading", J. Mech. Mater. Struct., 1(4), 663-680. crossref(new window)

42.
Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. crossref(new window)

43.
Zhang, Z., Wang C.M. and Challamel, N. (2015), "Eringen's length-scale coefficients for vibration and buckling of nonlocal rectangular plates with simply supported edges", J. Eng. Mech., 141(2), 04014117. crossref(new window)

44.
Zhao, Q., Gan, Z.H. and Zhuang, O.K. (2002), "Electrochemical sensors based on carbon nanotubes", Electroanal., 14(23), 1609-13. crossref(new window)