JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Dynamic response of curved Timoshenko beams resting on viscoelastic foundation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Dynamic response of curved Timoshenko beams resting on viscoelastic foundation
Calim, Faruk Firat;
 Abstract
Curved beams` dynamic behavior on viscoelastic foundation is the subject of the current paper. By rewritten the Timoshenko beams theory formulation for the curved and twisted spatial rods, governing equations are obtained for the circular beams on viscoelastic foundation. Using the complementary functions method (CFM), in Laplace domain, an ordinary differential equation is solved and then those results are transformed to real space by Durbin`s algorithm. Verification of the proposed method is illustrated by solving an example by variating foundation parameters.
 Keywords
inverse laplace transform;complementary functions method;circular beam;viscoelastic foundation;forced vibration;
 Language
English
 Cited by
1.
Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams,;;;

Structural Engineering and Mechanics, 2016. vol.60. 3, pp.455-470 crossref(new window)
1.
Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation, Composites Part B: Engineering, 2016, 103, 98  crossref(new windwow)
2.
Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams, Structural Engineering and Mechanics, 2016, 60, 3, 455  crossref(new windwow)
 References
1.
Calim, F.F. and Akkurt, F.G. (2011), "Static and free vibration analysis of straight and circular beams on elastic foundation", Mech. Res. Commun., 38, 89-94. crossref(new window)

2.
Calim, F.F. (2009a), "Dynamic analysis of beams on viscoelastic foundation", Eur. J. Mech. A-Solid., 28, 469-476.

3.
Calim, F.F. (2009b), "Forced vibration of helical rods of arbitrary shape", Mech. Res. Commun., 36, 882-891. crossref(new window)

4.
Calim, F.F. (2009c), "Dynamic analysis of composite coil springs of arbitrary shape", Compos. B: Eng., 40(8), 741-757. crossref(new window)

5.
Calim, F.F. (2012), "Forced vibration of curved beams on two-parameter elastic foundation", Appl. Math. Model., 36, 964-973. crossref(new window)

6.
Calim, F.F. (2016), "Transient analysis of axially functionally graded Timoshenko beams with variable cross-section", Compos. B: Eng., 98, 472-483. crossref(new window)

7.
Celebi, K., Yarimpabuc, D. and Keles, I. (2016), "A unified method for stresses in FGM sphere with exponentially-varying properties", Struct. Eng. Mech., 57(5), 823-35. crossref(new window)

8.
Celep, Z. (1990), "In-plane vibrations of circular rings on a tensionless foundation", J. Sound Vib., 143, 461-471. crossref(new window)

9.
Chen, W.Q., Lu, C.F. and Bian, Z.G. (2004), "A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation", Appl. Math. Model., 28, 877-890. crossref(new window)

10.
Chen, Y.H., Huang, Y.H. and Shih, C.T. (2001), "Reponse of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load", J. Sound Vib., 241, 809-824. crossref(new window)

11.
Dehghan, M. and Baradaran, G.H. (2011), "Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method", Appl. Math. Comput., 218, 2772-2784.

12.
Ding, H., Shi, K.L., Chen, L.Q. and Yang, S.P. (2013), "Dynamics response of an infinite Timoshenko beam on a nonlinear viscoelastic foundation to a moving load", Nonlin. Dyn., 73, 285-298. crossref(new window)

13.
Durbin, F. (1974), "Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate's method", Compos. J., 17, 371-376.

14.
Eratli, N., Argeso, H., Calim, F.F., Temel, B. and Omurtag, MH. (2014), "Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM", J. Sound Vib., 333, 3671-3690. crossref(new window)

15.
Issa, M.S. (1988), "Natural frequencies of continuous curved beams on Winkler-type foundations", J. Sound Vib., 127, 291-301. crossref(new window)

16.
Issa, M.S., Nasr, M.E. and Naiem, M.A. (1990), "Free vibrations of curved Timoshenko beams on Pasternak foundations", Int. J. Solid. Struct., 26, 1243-1252. crossref(new window)

17.
Kargarnovin, M.H. and Younesian, D. (2004), "Dynamics of Timoshenko beams on Pasternak foundation under moving load", Mech. Res. Commun., 31, 713-723. crossref(new window)

18.
Kargarnovin, M.H., Younesian, D., Thompson, D.J. and Jones, C.J.C. (2005), "Response of beams on nonlinear viscoelastic foundations to harmonic moving loads", Comput. Struct., 83, 1865-1877. crossref(new window)

19.
Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech.-T, ASME, 31, 491-498. crossref(new window)

20.
Kim, N., Fu, C.C. and Kim, M.Y. (2007), "Dynamic stiffness matrix of non-symmetric thin-walled curved beam on Winkler and Pasternak type foundations", Adv. Eng. Softw., 38, 158-171. crossref(new window)

21.
Liu, T. and Li, Q. (2003), "Transient elastic waves propagation in an infinite Timoshenko beam on viscoelastic foundation", Int. J. Solid. Struct., 40, 3211-3228. crossref(new window)

22.
Muscolino, G. and Palmeri, A. (2007), "Response of beams resting on viscoelastically damped foundation to moving oscillators", Int. J. Solid. Struct., 44, 1317-1336. crossref(new window)

23.
Narayanan, G.V. (1979), "Numerical operational methods in structural dynamics", Ph.D. Thesis, University of Minnesota, Minneapolis MN.

24.
Sokolnikoff, I.S. and Redheffer, R.M. (1958), Mathematics of Physics and Modern Engineering, McGraw-Hill, Tokyo.

25.
Temel, B., Calim, F.F. and Tutuncu, N. (2005), "Forced vibration of composite cylindrical helical rods", Int. J. Mech. Sci., 47, 998-1022. crossref(new window)

26.
Verichev, S.N. and Metrikine, V.A. (2002), "Instability of a bogie moving on a flexibly supported Timoshenko beam", J. Sound Vib., 253, 653-668. crossref(new window)

27.
Wang, T.M. and Brannen, W.F. (1982), "Natural frequencies for out-of-plane vibrations of curved beams on elastic foundations", J. Sound Vib., 84, 241-246. crossref(new window)

28.
Wu, X. and Parker, R.G. (2006), "Vibration of rings on a general elastic foundation", J. Sound Vib., 295, 194-213. crossref(new window)

29.
Yang, Y., Ding, H. and Chen, L.Q. (2013), "Dynamics response to a moving load of a Timoshenko beam resting on a nonlinear viscoelastic foundation", Acta Mech. Sinica, 29, 718-727. crossref(new window)

30.
Zhu, B. and Leung, A.Y.T. (2009), "Linear and nonlinear vibration of non-uniform beams on two-parameter elastic foundation using p-elements", Comput. Geotech., 36, 743-750. crossref(new window)